

Java®

7th Edition

by Barry Burd, PhD

Java® For Dummies®, 7th Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Java is a registered trademark of Oracle America, Inc. Android is a registered trademark of Google, Inc.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017932837

ISBN: 978-1-119-23555-2; 978-1-119-23558-3 (ebk); 978-1-119-23557-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies#_blank
http://booksupport.wiley.com
http://www.wiley.com
https://hub.wiley.com/community/support/dummies

Contents at a Glance
Introduction . 1

Part 1: Getting Started with Java . 9
CHAPTER 1: All about Java . 11
CHAPTER 2: All about Software . 25
CHAPTER 3: Using the Basic Building Blocks . 43

Part 2: Writing Your Own Java Programs . 65
CHAPTER 4: Making the Most of Variables and Their Values . 67
CHAPTER 5: Controlling Program Flow with Decision-Making Statements 105
CHAPTER 6: Controlling Program Flow with Loops . 139

Part 3: Working with the Big Picture:
Object-Oriented Programming . 159
CHAPTER 7: Thinking in Terms of Classes and Objects . 161
CHAPTER 8: Saving Time and Money: Reusing Existing Code 197
CHAPTER 9: Constructing New Objects . 231

Part 4: Smart Java Techniques . 257
CHAPTER 10: Putting Variables and Methods Where They Belong 259
CHAPTER 11: Using Arrays to Juggle Values . 293
CHAPTER 12: Using Collections and Streams (When Arrays Aren’t

Good Enough) . 321
CHAPTER 13: Looking Good When Things Take Unexpected Turns 351
CHAPTER 14: Sharing Names among the Parts of a Java Program 383
CHAPTER 15: Fancy Reference Types . 409
CHAPTER 16:	Responding	to	Keystrokes	and	Mouse Clicks . 427
CHAPTER 17: Using Java Database Connectivity . 445

Part 5: The Part of Tens . 455
CHAPTER 18: Ten Ways to Avoid Mistakes . 457
CHAPTER 19: Ten Websites for Java . 463

Index . 465

Table of Contents v

Table of Contents
INTRODUCTION . 1

How to Use This Book .1
Conventions Used in This Book .2
What You Don’t Have to Read .2
Foolish Assumptions .3
How This Book Is Organized .4

Part 1: Getting Started with Java .4
Part 2: Writing Your Own Java Program . 4
Part 3: Working with the Big Picture: Object-Oriented
Programming . 5
Part 4: Smart Java Techniques .5
Part 5: The Part of Tens .5

Icons Used in This Book .5
Beyond the Book .6
Where to Go from Here .7

PART 1: GETTING STARTED WITH JAVA . 9

CHAPTER 1: All about Java . 11
What You Can Do with Java .12
Why You Should Use Java .13
Getting Perspective: Where Java Fits In .14
Object-Oriented Programming (OOP) .16

Object-oriented languages .16
Objects and their classes .18
What’s so good about an object-oriented language? 19
Refining	your	understanding	of	classes	and	objects 21

What’s Next? .23

CHAPTER 2: All about Software . 25
Quick-Start Instructions .25
What You Install on Your Computer .28

What is a compiler? .29
What is a Java Virtual Machine? .32
Developing software .39
What is an integrated development environment? 40

CHAPTER 3: Using the Basic Building Blocks . 43
Speaking the Java Language .43

The grammar and the common names .44
The words in a Java program .45

vi Java For Dummies

Checking Out Java Code for the First Time .47
Understanding a Simple Java Program .48

The Java class .49
The Java method .50
The main method in a program .52
How	you	finally	tell	the	computer	to	do	something 53
Curly braces .55

And Now, a Few Comments .59
Adding comments to your code .60
What’s Barry’s excuse? .63
Using comments to experiment with your code 63

PART 2: WRITING YOUR OWN JAVA PROGRAMS 65

CHAPTER 4: Making the Most of Variables and Their Values . . . 67
Varying a Variable .68

Assignment statements .70
The types of values that variables may have 71
Displaying text .74
Numbers without decimal points .75
Combining declarations and initializing variables 77

Experimenting with JShell .78
What	Happened	to	All	the	Cool	Visual	Effects? .82
The Atoms: Java’s Primitive Types .82

The char type .83
The boolean type .85

The Molecules and Compounds: Reference Types 87
An Import Declaration .91
Creating New Values by Applying Operators .93

Initialize once, assign often .97
The increment and decrement operators .98
Assignment operators .102

CHAPTER 5: Controlling Program Flow with Decision-Making
Statements . 105
Making Decisions (Java if Statements) .106

Guess the number .106
She controlled keystrokes from the keyboard 107
Creating randomness .110
The if statement .111
The double equal sign .112
Brace yourself .112
Indenting if statements in your code .113
Elseless in Ifrica .114

Table of Contents vii

Using Blocks in JShell .116
Forming Conditions with Comparisons and Logical Operators 117

Comparing numbers; comparing characters 117
Comparing objects .118
Importing everything in one fell swoop .121
Java’s logical operators .121
Vive les nuls! .124
(Conditions in parentheses) .125

Building a Nest .127
Choosing among Many Alternatives (Java switch Statements) 130

Your basic switch statement .130
To break or not to break .134
Strings in a switch statement .136

CHAPTER 6: Controlling Program Flow with Loops 139
Repeating Instructions Over and Over Again
(Java while Statements) .140
Repeating a Certain Number of Times (Java for Statements) 143

The anatomy of a for statement .145
The world premiere of “Al’s All Wet” .147

Repeating	until	You	Get	What	You	Want (Java	do	Statements) 150
Reading a single character .154
File handling in Java .154
Variable declarations and blocks .156

PART 3: WORKING WITH THE BIG PICTURE:
OBJECT-ORIENTED PROGRAMMING . 159

CHAPTER 7: Thinking in Terms of Classes and Objects 161
Defining	a	Class	(What	It	Means	to	Be	an	Account) 162

Declaring variables and creating objects .164
Initializing a variable .167
Using	an	object’s	fields .167
One program; several classes .168
Public classes .168

Defining	a	Method	within	a	Class	(Displaying	an	Account) 169
An account that displays itself .171
The display method’s header .172

Sending Values to and from Methods (Calculating Interest) 173
Passing a value to a method .176
Returning a value from the getInterest method 178

Making Numbers Look Good .180

viii Java For Dummies

Hiding Details with Accessor Methods .185
Good programming . .185
Public	lives	and	private	dreams:	Making	a	field	inaccessible 188
Enforcing rules with accessor methods .190

Barry’s Own GUI Class . .190

CHAPTER 8: Saving Time and Money: Reusing
Existing Code . 197
Defining	a	Class	(What	It	Means	to	Be	an	Employee) 198

The last word on employees .198
Putting your class to good use .200
Cutting a check .204

Working with Disk Files (a Brief Detour) .205
Storing	data	in	a	file .205
Copying and pasting code .206
Reading	from	a	file .208
Who	moved	my	file? .210
Adding	directory	names	to	your	filenames 211
Reading a line at a time .212
Closing	the	connection	to	a	disk	file .213

Defining	Subclasses	(What	It	Means	to	Be	a	Full-Time	
or Part-Time Employee) .214

Creating a subclass .216
Creating subclasses is habit-forming .219

Using Subclasses .219
Making types match .221
The second half of the story .222

Overriding Existing Methods (Changing the Payments
for Some Employees) .224

A Java annotation .226
Using methods from classes and subclasses 226

CHAPTER 9: Constructing New Objects . 231
Defining	Constructors	(What	It	Means	to	Be	a	Temperature) 232

What is a temperature? .233
What is a temperature scale? (Java’s enum type) 233
Okay, so then what is a temperature? .234
What you can do with a temperature .236
Calling new Temperature(32 .0): A case study 239
Some things never change .241

More Subclasses (Doing Something about the Weather) 243
Building better temperatures .243
Constructors for subclasses .245
Using	all	this	stuff .246
The default constructor .247

Table of Contents ix

A Constructor That Does More .250
Classes and methods from the Java API .253
The SuppressWarnings annotation .254

PART 4: SMART JAVA TECHNIQUES . 257

CHAPTER 10: Putting Variables and Methods
Where They Belong . 259
Defining	a	Class	(What	It	Means	to	Be	a	Baseball	Player) 260

Another way to beautify your numbers .261
Using the Player class .261
One class; nine objects .264
Don’t get all GUI on me .265
Tossing an exception from method to method 266

Making Static (Finding the Team Average) .267
Why is there so much static? .269
Meet the static initializer .270
Displaying the overall team average .271
The static keyword is yesterday’s news .273
Could cause static; handle with care .274

Experiments with Variables .277
Putting a variable in its place .277
Telling a variable where to go .280

Passing Parameters . .285
Pass by value .285
Returning a result .287
Pass by reference .287
Returning an object from a method .289
Epilogue .292

CHAPTER 11: Using Arrays to Juggle Values . 293
Getting Your Ducks All in a Row .293

Creating an array in two easy steps .296
Storing values .297
Tab stops and other special things .299
Using an array initializer .299
Stepping through an array with the enhanced for loop 300
Searching .302
Writing	to	a	file .305
When	to	close	a	file .306

Arrays of Objects .307
Using the Room class .309
Yet another way to beautify your numbers 312
The conditional operator .313

x Java For Dummies

Command Line Arguments .315
Using	command	line	arguments	in	a	Java program 317
Checking for the right number of command line arguments 319

CHAPTER 12: Using Collections and Streams (When
Arrays Aren’t Good Enough) . 321
Understanding the Limitations of Arrays .321
Collection Classes to the Rescue .323

Using an ArrayList .323
Using generics .325
Wrapper classes .328
Testing for the presence of more data .330
Using an iterator .330
Java’s many collection classes .331

Functional Programming .333
Solving a problem the old-fashioned way .336
Streams .338
Lambda expressions .339
A taxonomy of lambda expressions .342
Using streams and lambda expressions .342
Why bother? .348
Method references .350

CHAPTER 13: Looking Good When Things Take
Unexpected Turns . 351
Handling Exceptions .352

The parameter in a catch clause .356
Exception types .357
Who’s going to catch the exception? .359
Catching two or more exceptions at a time 365
Throwing caution to the wind .366
Doing useful things .367
Our friends, the good exceptions .368

Handle an Exception or Pass the Buck .369
Finishing	the	Job	with	a	finally	Clause .376
A try Statement with Resources .379

CHAPTER 14: Sharing Names among the Parts of a
Java Program . 383
Access	Modifiers .384
Classes, Access, and Multipart Programs .385

Members versus classes .385
Access	modifiers	for	members .386

Table of Contents xi

Putting a drawing on a frame .389
Directory structure .391
Making a frame .392

Sneaking Away from the Original Code .394
Default access .396
Crawling back into the package .399

Protected Access .400
Subclasses that aren’t in the same package 400
Classes that aren’t subclasses (but are in the same package) 402

Access	Modifiers	for	Java	Classes .406
Public classes .406
Nonpublic classes .406

CHAPTER 15: Fancy Reference Types . 409
Java’s Types .409
The Java Interface .410

Two interfaces .411
Implementing interfaces .412
Putting the pieces together .415

Abstract Classes .417
Caring for your pet .420
Using all your classes .422

Relax! You’re Not Seeing Double! .424

CHAPTER 16:	Responding	to	Keystrokes	and	Mouse Clicks 427
Go	On . . . Click	That	Button .428

Events and event handling .430
Threads of execution .431
The keyword this .432
Inside the actionPerformed method .434
The serialVersionUID .435

Responding to Things Other Than Button Clicks 436
Creating Inner Classes .441

CHAPTER 17: Using Java Database Connectivity 445
Creating a Database and a Table .446

What happens when you run the code .447
Using SQL commands .447
Connecting and disconnecting .449

Putting Data in the Table .450
Retrieving Data .451
Destroying Data .453

xii Java For Dummies

PART 5: THE PART OF TENS . 455

CHAPTER 18: Ten Ways to Avoid Mistakes . 457
Putting Capital Letters Where They Belong .457
Breaking Out of a switch Statement .458
Comparing Values with a Double Equal Sign .458
Adding Components to a GUI .459
Adding Listeners to Handle Events .459
Defining	the	Required	Constructors .459
Fixing Non-Static References .460
Staying within Bounds in an Array .460
Anticipating Null Pointers .461
Helping Java Find Its Files .462

CHAPTER 19: Ten Websites for Java . 463
This Book’s Website .463
The Horse’s Mouth .463
Finding News, Reviews, and Sample Code .464
Got a Technical Question? .464

INDEX . 465

Introduction 1

Introduction
Java is good stuff. I’ve been using it for years. I like Java because it’s orderly.

Almost everything follows simple rules. The rules can seem intimidating at
times, but this book is here to help you figure them out. So, if you want to use

Java and you want an alternative to the traditional techie, soft-cover book, sit
down, relax, and start reading Java For Dummies, 7th Edition.

How to Use This Book
I wish I could say, “Open to a random page of this book and start writing Java
code. Just fill in the blanks and don’t look back.” In a sense, this is true. You can’t
break anything by writing Java code, so you’re always free to experiment.

But let me be honest. If you don’t understand the bigger picture, writing a program
is difficult. That’s true with any computer programming language — not just Java.
If you’re typing code without knowing what it’s about and the code doesn’t do
exactly what you want it to do, you’re just plain stuck.

In this book, I divide Java programming into manageable chunks. Each chunk is
(more or less) a chapter. You can jump in anywhere you want — Chapter 5,
 Chapter 10, or wherever. You can even start by poking around in the middle of a
chapter. I’ve tried to make the examples interesting without making one chapter
depend on another. When I use an important idea from another chapter, I include
a note to help you find your way around.

In general, my advice is as follows:

 » If you already know something, don’t bother reading about it.

 » If you’re curious, don’t be afraid to skip ahead. You can always sneak a peek at
an earlier chapter, if you really need to do so.

2 Java For Dummies

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Java For
Dummies, 7th Edition, is no exception. What follows is a brief explanation of the
typefaces used in this book:

 » New terms are set in italics.

 » If you need to type something that’s mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject in the
text field.”

 » You also see this computerese font. I use computerese for Java code,
filenames, web page addresses (URLs), onscreen messages, and other such
things. Also, if something you need to type is really long, it appears in comput-
erese font on its own line (or lines).

 » You need to change certain things when you type them on your own com-
puter keyboard. For instance, I may ask you to type

public class Anyname

which means that you type public class and then some name that you make
up on your own. Words that you need to replace with your own words are set
in italicized computerese.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and start
reading there. Of course, you may hate making decisions as much as I do. If so,
here are some guidelines that you can follow:

 » If you already know what kind of an animal Java is and know that you want to
use Java, skip Chapter 1 and go straight to Chapter 2. Believe me, I won’t mind.

 » If you already know how to get a Java program running, and you don’t care
what happens behind the scenes when a Java program runs, skip Chapter 2
and start with Chapter 3.

 » If you write programs for a living but use any language other than C or C++,
start with Chapter 2 or 3. When you reach Chapters 5 and 6, you’ll probably
find them to be easy reading. When you get to Chapter 7, it’ll be time to dive in.

Introduction 3

 » If you write C (not C++) programs for a living, start with Chapters 2, 3, and 4
and just skim Chapters 5 and 6.

 » If you write C++ programs for a living, glance at Chapters 2 and 3, skim
Chapters 4 through 6, and start reading seriously in Chapter 7. (Java is a bit
different from C++ in the way it handles classes and objects.)

 » If you write Java programs for a living, come to my house and help me write
Java For Dummies, 8th Edition.

If you want to skip the sidebars and the Technical Stuff icons, please do. In fact, if
you want to skip anything at all, feel free.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
 incorrect . . . well, buy the book anyway:

 » I assume that you have access to a computer. Here’s the good news: You
can run most of the code in this book on almost any computer. The only
computers that you can’t use to run this code are ancient things that are more
than ten years old (give or take a few years).

 » I assume that you can navigate through your computer’s common
menus and dialog boxes. You don’t have to be a Windows, Linux, or
Macintosh power user, but you should be able to start a program, find a file,
put a file into a certain directory . . . that sort of thing. Most of the time, when
you practice the stuff in this book, you’re typing code on the keyboard, not
pointing and clicking the mouse.

On those rare occasions when you need to drag and drop, cut and paste, or
plug and play, I guide you carefully through the steps. But your computer may
be configured in any of several billion ways, and my instructions may not quite
fit your special situation. When you reach one of these platform-specific tasks,
try following the steps in this book. If the steps don’t quite fit, consult a book
with instructions tailored to your system.

 » I assume that you can think logically. That’s all there is to programming in
Java — thinking logically. If you can think logically, you’ve got it made. If you
don’t believe that you can think logically, read on. You may be pleasantly
surprised.

4 Java For Dummies

 » I make few assumptions about your computer programming experience
(or your lack of such experience). In writing this book, I’ve tried to do the
impossible: I’ve tried to make the book interesting for experienced program-
mers yet accessible to people with little or no programming experience.
This means that I don’t assume any particular programming background on
your part. If you’ve never created a loop or indexed an array, that’s okay.

On the other hand, if you’ve done these things (maybe in Visual Basic, Python,
or C++), you’ll discover some interesting plot twists in Java. The developers of
Java took the best ideas in object-oriented programming, streamlined them,
reworked them, and reorganized them into a sleek, powerful way of thinking
about problems. You’ll find many new, thought-provoking features in Java. As
you find out about these features, many of them will seem quite natural to
you. One way or another, you’ll feel good about using Java.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections, which
come together to make chapters, which are lumped finally into five parts. (When
you write a book, you get to know your book’s structure pretty well. After months
of writing, you find yourself dreaming in sections and chapters when you go to
bed at night.) The parts of the book are listed here.

Part 1: Getting Started with Java
This part is your complete, executive briefing on Java. It includes some “What is
Java?” material and a jump-start chapter — Chapter 3. In Chapter 3, you visit the
major technical ideas and dissect a simple program.

Part 2: Writing Your Own Java Program
Chapters 4 through 6 cover the fundamentals. These chapters describe the things
that you need to know so that you can get your computer humming along.

If you’ve written programs in Visual Basic, C++, or any another language, some of
the material in Part 2 may be familiar to you. If so, you can skip some sections or
read this stuff quickly. But don’t read too quickly. Java is a little different from some
other programming languages, especially in the things that I describe in Chapter 4.

Introduction 5

Part 3: Working with the Big Picture:
Object-Oriented Programming
Part 3 has some of my favorite chapters. This part covers the all-important topic
of object-oriented programming. In these chapters, you find out how to map
solutions to big problems. (Sure, the examples in these chapters aren’t big, but the
examples involve big ideas.) In bite-worthy increments, you discover how to
design classes, reuse existing classes, and construct objects.

Have you read any of those books that explain object-oriented programming in
vague, general terms? I’m proud to say that Java For Dummies, 7th Edition, isn’t
like that. In this book, I illustrate each concept with a simple-yet-concrete pro-
gram example.

Part 4: Smart Java Techniques
If you’ve tasted some Java and you want more, you can find what you need in this
part of the book. This part’s chapters are devoted to details — the things that you
don’t see when you first glance at the material. After you read the earlier parts and
write some programs on your own, you can dive in a little deeper by reading Part 4.

Part 5: The Part of Tens
The Part of Tens is a little Java candy store. In the Part of Tens, you can find
lists — lists of tips for avoiding mistakes, for finding resources, and for all kinds
of interesting goodies.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer, talk-
ing to myself. I say each sentence in my head. Most of the sentences, I mutter
several times. When I have an extra thought, a side comment, or something that
doesn’t belong in the regular stream, I twist my head a little bit. That way, who-
ever’s listening to me (usually nobody) knows that I’m off on a momentary
tangent.

Of course, in print, you can’t see me twisting my head. I need some other way of
setting a side thought in a corner by itself. I do it with icons. When you see a Tip
icon or a Remember icon, you know that I’m taking a quick detour.

6 Java For Dummies

Here’s a list of icons that I use in this book:

A tip is an extra piece of information — something helpful that the other books
may forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time. Any-
way, when I think people are especially prone to make a mistake, I mark it with a
Warning icon.

Question: What’s stronger than a Tip, but not as strong as a Warning?

Answer: A Remember icon.

“If you don’t remember what such-and-such means, see blah-blah-blah,” or
“For more information, read blahbity-blah-blah.”

Writing computer code is an activity, and the best way to learn an activity is to
practice it. That’s why I’ve created things for you to try in order to reinforce your
knowledge. Many of these are confidence-builders, but some are a bit more chal-
lenging. When you first start putting things into practice, you’ll discover all kinds
of issues, quandaries, and roadblocks that didn’t occur to you when you started
reading about the material. But that’s a good thing. Keep at it! Don’t become frus-
trated. Or, if you do become frustrated, visit this book’s website (www.allmycode.
com/JavaForDummies) for hints and solutions.

This icon calls attention to useful material that you can find online. Check it out!

Occasionally, I run across a technical tidbit. The tidbit may help you understand
what the people behind the scenes (the people who developed Java) were thinking.
You don’t have to read it, but you may find it useful. You may also find the tidbit
helpful if you plan to read other (more geeky) books about Java.

Beyond the Book
In addition to what you’re reading right now, this book comes with a free access-
anywhere Cheat Sheet containing code that you can copy and paste into your own
Android program. To get this Cheat Sheet, simply go to www.dummies.com and type
Java For Dummies Cheat Sheet in the Search box.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://www.dummies.com/

Introduction 7

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Java application
development. Think of me (the author) as your guide, your host, your personal
assistant. I do everything I can to keep things interesting and, most importantly,
to help you understand.

If you like what you read, send me a note. My email address, which I created just
for comments and questions about this book, is JavaForDummies@allmycode.
com. If email and chat aren’t your favorites, you can reach me instead on Twitter
(@allmycode) and on Facebook (www.facebook.com/allmycode). And don’t
forget — for the latest updates, visit this book’s website. The site’s address is
www.allmycode.com/JavaForDummies.

mailto:JavaForDummies@allmycode.com
mailto:JavaForDummies@allmycode.com
http://www.twitter.com/allmycode
http://www.facebook.com/allmycode
http://www.allmycode.com/JavaForDummies

1Getting Started
with Java

IN THIS PART . . .

Find out about the tools you need for developing Java
programs.

Find out how Java fits into today’s technology scene.

See your first complete Java program.

CHAPTER 1 All about Java 11

IN THIS CHAPTER

 » What Java is

 » Where Java came from

 » Why Java is so cool

 » How to orient yourself to object-
oriented programming

All about Java

S
ay what you want about computers. As far as I’m concerned, computers are
good for just two simple reasons:

 » When computers do work, they feel no resistance, no stress, no bore-
dom, and no fatigue. Computers are our electronic slaves. I have my
computer working 24/7 doing calculations for Cosmology@Home — a distrib-
uted computing project to investigate models describing the universe. Do I
feel sorry for my computer because it’s working so hard? Does the computer
complain? Will the computer report me to the National Labor Relations
Board? No.

I can make demands, give the computer its orders, and crack the whip.
Do I (or should I) feel the least bit guilty? Not at all.

 » Computers move ideas, not paper. Not long ago, when you wanted to send
a message to someone, you hired a messenger. The messenger got on his or
her horse and delivered your message personally. The message was on paper,
parchment, a clay tablet, or whatever physical medium was available at the
time.

This whole process seems wasteful now, but that’s only because you and I are
sitting comfortably in the electronic age. Messages are ideas, and physical
things like ink, paper, and horses have little or nothing to do with real ideas;
they’re just temporary carriers for ideas (even though people used them to
carry ideas for several centuries). Nevertheless, the ideas themselves are
paperless, horseless, and messengerless.

Chapter 1

https://www.cosmologyathome.org/

12 PART 1 Getting Started with Java

The neat thing about computers is that they carry ideas efficiently. They carry
nothing but the ideas, a couple of photons, and a little electrical power. They
do this with no muss, no fuss, and no extra physical baggage.

When you start dealing efficiently with ideas, something very nice happens. Sud-
denly, all the overhead is gone. Instead of pushing paper and trees, you’re pushing
numbers and concepts. Without the overhead, you can do things much faster and
do things that are far more complex than ever before.

What You Can Do with Java
It would be so nice if all this complexity were free, but unfortunately, it isn’t.
Someone has to think hard and decide exactly what to ask the computer to do.
After that thinking takes place, someone has to write a set of instructions for the
computer to follow.

Given the current state of affairs, you can’t write these instructions in English or
any other language that people speak. Science fiction is filled with stories about
people who say simple things to robots and get back disastrous, unexpected
results. English and other such languages are unsuitable for communication with
computers, for several reasons:

 » An English sentence can be misinterpreted. “Chew one tablet three times a
day until finished.”

 » It’s difficult to weave a very complicated command in English. “Join flange
A to protuberance B, making sure to connect only the outermost lip of flange
A to the larger end of the protuberance B, while joining the middle and inner
lips of flange A to grommet C.”

 » An English sentence has lots of extra baggage. “Sentence has unneeded
words.”

 » English is difficult to interpret. “As part of this Publishing Agreement
between John Wiley & Sons, Inc. (‘Wiley’) and the Author (‘Barry Burd’), Wiley
shall pay the sum of one-thousand-two-hundred-fifty-seven dollars and
sixty-three cents ($1,257.63) to the Author for partial submittal of Java For
Dummies, 7th Edition (‘the Work’).”

To tell a computer what to do, you have to use a special language to write terse,
unambiguous instructions. A special language of this kind is called a computer
programming language. A set of instructions written in such a language is called a
program. When looked at as a big blob, these instructions are called software or
code. Here’s what code looks like when it’s written in Java:

CHAPTER 1 All about Java 13

public class PayBarry {

 public static void main(String args[]) {

 double checkAmount = 1257.63;

 System.out.print("Pay to the order of ");

 System.out.print("Dr. Barry Burd ");

 System.out.print("$");

 System.out.println(checkAmount);

 }

}

Why You Should Use Java
It’s time to celebrate! You’ve just picked up a copy of Java For Dummies, 7th Edition,
and you’re reading Chapter 1. At this rate, you’ll be an expert Java programmer* in
no time at all, so rejoice in your eventual success by throwing a big party.

To prepare for the party, I’ll bake a cake. I’m lazy, so I’ll use a ready-to-bake cake
mix. Let me see . . . add water to the mix and then add butter and eggs — hey,
wait! I just looked at the list of ingredients. What’s MSG? And what about propyl-
ene glycol? That’s used in antifreeze, isn’t it?

I’ll change plans and make the cake from scratch. Sure, it’s a little harder, but that
way I get exactly what I want.

Computer programs work the same way. You can use somebody else’s program or
write your own. If you use somebody else’s program, you use whatever you get. When
you write your own program, you can tailor the program especially for your needs.

Writing computer code is a big, worldwide industry. Companies do it, freelance
professionals do it, hobbyists do it — all kinds of people do it. A typical big com-
pany has teams, departments, and divisions that write programs for the company.
But you can write programs for yourself or someone else, for a living or for fun. In
a recent estimate, the number of lines of code written each day by programmers
in the United States alone exceeds the number of methane molecules on the planet
Jupiter.** Take almost anything that can be done with a computer. With the right
amount of time, you can write your own program to do it. (Of course, the “right
amount of time” may be very long, but that’s not the point. Many interesting and
useful programs can be written in hours or even minutes.)

*In professional circles, a developer’s responsibilities are usually broader than
those of a programmer. But, in this book, I use the terms programmer and devel-
oper almost interchangeably.

**I made up this fact all by myself.

14 PART 1 Getting Started with Java

Getting Perspective: Where Java Fits In
Here’s a brief history of modern computer programming:

 » 1954–1957: FORTRAN is developed.

FORTRAN was the first modern computer programming language. For
scientific programming, FORTRAN is a real racehorse. Year after year,
FORTRAN is a leading language among computer programmers throughout
the world.

 » 1959: Grace Hopper at Remington Rand develops the COBOL program-
ming language.

The letter B in COBOL stands for Business, and business is just what COBOL is
all about. The language’s primary feature is the processing of one record after
another, one customer after another, or one employee after another.

Within a few years after its initial development, COBOL became the most
widely used language for business data processing.

 » 1972: Dennis Ritchie at AT&T Bell Labs develops the C programming
language.

The “look and feel” that you see in this book’s examples comes from the C
programming language. Code written in C uses curly braces, if statements,
for statements, and so on.

In terms of power, you can use C to solve the same problems that you can
solve by using FORTRAN, Java, or any other modern programming language.
(You can write a scientific calculator program in COBOL, but doing that sort of
thing would feel really strange.) The difference between one programming
language and another isn’t power. The difference is ease and appropriateness
of use. That’s where the Java language excels.

 » 1986: Bjarne Stroustrup (again at AT&T Bell Labs) develops C++.

Unlike its C language ancestor, the language C++ supports object-oriented
programming. This support represents a huge step forward. (See the next
section in this chapter.)

 » May 23, 1995: Sun Microsystems releases its first official version of the
Java programming language.

Java improves upon the concepts in C++. Java’s “Write Once, Run Anywhere”
philosophy makes the language ideal for distributing code across the Internet.

Additionally, Java is a great general-purpose programming language. With
Java, you can write windowed applications, build and explore databases,

CHAPTER 1 All about Java 15

control handheld devices, and more. Within five short years, the Java pro-
gramming language had 2.5 million developers worldwide. (I know. I have a
commemorative T-shirt to prove it.)

 » November 2000: The College Board announces that, starting in the year
2003, the Computer Science Advanced Placement exams will be based
on Java.

Wanna know what that snot-nosed kid living down the street is learning in
high school? You guessed it — Java.

 » 2002: Microsoft introduces a new language, named C#.

Many of the C# language features come directly from features in Java.

 » June 2004: Sys-Con Media reports that the demand for Java programmers
tops the demand for C++ programmers by 50 percent (http://java.
sys-con.com/node/48507).

And there’s more! The demand for Java programmers beats the combined
demand for C++ and C# programmers by 8 percent. Java programmers are
more employable than Visual Basic (VB) programmers by a whopping 190
percent.

 » 2007: Google adopts Java as the primary language for creating apps on
Android mobile devices.

 » January 2010: Oracle Corporation purchases Sun Microsystems, bringing
Java technology into the Oracle family of products.

 » June 2010: eWeek ranks Java first among its “Top 10 Programming
Languages to Keep You Employed” (www.eweek.com/c/a/Application-
Development/Top-10-Programming-Languages-to-Keep-You-Employed-
719257).

 » 2016: Java runs on 15 billion devices (http://java.com/en/about), with
Android Java running on 87.6 percent of all mobile phones worldwide
(www.idc.com/prodserv/smartphone-os-market-share.jsp).

Additionally, Java technology provides interactive capabilities to all Blu-ray
devices and is the most popular programming language in the TIOBE
Programming Community Index (www.tiobe.com/index.php/content/
paperinfo/tpci), on PYPL: the PopularitY of Programming Language Index
(http://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-
of-Programming-Language), and on other indexes.

Well, I’m impressed.

http://java.sys-con.com/node/48507
http://java.sys-con.com/node/48507
http://www.eweek.com/c/a/Application-Development/Top-10-Programming-Languages-to-Keep-You-Employed-719257
http://www.eweek.com/c/a/Application-Development/Top-10-Programming-Languages-to-Keep-You-Employed-719257
http://www.eweek.com/c/a/Application-Development/Top-10-Programming-Languages-to-Keep-You-Employed-719257
http://java.com/en/about
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.tiobe.com/index.php/content/paperinfo/tpci
http://www.tiobe.com/index.php/content/paperinfo/tpci
http://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language
http://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language

16 PART 1 Getting Started with Java

Object-Oriented Programming (OOP)
It’s three in the morning. I’m dreaming about the history course that I failed in
high school. The teacher is yelling at me, “You have two days to study for the final
exam, but you won’t remember to study. You’ll forget and feel guilty, guilty,
guilty.”

Suddenly, the phone rings. I’m awakened abruptly from my deep sleep. (Sure,
I disliked dreaming about the history course, but I like being awakened even less.)
At first, I drop the telephone on the floor. After fumbling to pick it up, I issue a
grumpy, “Hello, who’s this?” A voice answers, “I’m a reporter from the New York
Times. I’m writing an article about Java, and I need to know all about the program-
ming language in five words or less. Can you explain it?”

My mind is too hazy. I can’t think. So I say the first thing that comes to my mind
and then go back to sleep.

Come morning, I hardly remember the conversation with the reporter. In fact,
I don’t remember how I answered the question. Did I tell the reporter where he
could put his article about Java?

I put on my robe and rush out to my driveway. As I pick up the morning paper,
I glance at the front page and see this 2-inch headline:

Burd Calls Java “A Great Object-Oriented Language”

Object-oriented languages
Java is object-oriented. What does that mean? Unlike languages, such as FOR-
TRAN, that focus on giving the computer imperative “Do this/Do that” com-
mands, object-oriented languages focus on data. Of course, object-oriented
programs still tell the computer what to do. They start, however, by organizing
the data, and the commands come later.

Object-oriented languages are better than “Do this/Do that” languages because
they organize data in a way that helps people do all kinds of things with it. To
modify the data, you can build on what you already have rather than scrap every-
thing you’ve done and start over each time you need to do something new.
Although computer programmers are generally smart people, they took a while to
figure this out. For the full history lesson, see the sidebar “The winding road from
FORTRAN to Java” (but I won’t make you feel guilty if you don’t read it).

CHAPTER 1 All about Java 17

(continued)

THE WINDING ROAD FROM
FORTRAN TO JAVA
In the mid-1950s, a team of people created a programming language named
FORTRAN. It was a good language, but it was based on the idea that you should issue
direct, imperative commands to the computer. “Do this, computer. Then do that, com-
puter.” (Of course, the commands in a real FORTRAN program were much more precise
than “Do this” or “Do that.”)

In the years that followed, teams developed many new computer languages, and many
of the languages copied the FORTRAN “Do this/Do that” model. One of the more popu-
lar “Do this/Do that” languages went by the 1-letter name C. Of course, the “Do this/Do
that” camp had some renegades. In languages named SIMULA and Smalltalk, program-
mers moved the imperative “Do this” commands into the background and concentrated
on descriptions of data. In these languages, you didn’t come right out and say, “Print a
list of delinquent accounts.” Instead, you began by saying, “This is what it means to be
an account. An account has a name and a balance.” Then you said, “This is how you ask
an account whether it’s delinquent.” Suddenly, the data became king. An account was a
thing that had a name, a balance, and a way of telling you whether it was delinquent.

Languages that focus first on the data are called object-oriented programming lan-
guages. These object-oriented languages make excellent programming tools.
Here’s why:

• Thinking first about the data makes you a good computer programmer.

• You can extend and reuse the descriptions of data over and over again. When you
try to teach old FORTRAN programs new tricks, however, the old programs show
how brittle they are. They break.

In the 1970s, object-oriented languages, such as SIMULA and Smalltalk, were buried in
the computer hobbyist magazine articles. In the meantime, languages based on the old
FORTRAN model were multiplying like rabbits.

So in 1986, a fellow named Bjarne Stroustrup created a language named C++. The C++
language became very popular because it mixed the old C language terminology with
the improved object-oriented structure. Many companies turned their backs on the old
FORTRAN/C programming style and adopted C++ as their standard.

18 PART 1 Getting Started with Java

Objects and their classes
In an object-oriented language, you use objects and classes to organize your data.

Imagine that you’re writing a computer program to keep track of the houses in a
new condominium development (still under construction). The houses differ only
slightly from one another. Each house has a distinctive siding color, an indoor
paint color, a kitchen cabinet style, and so on. In your object-oriented computer
program, each house is an object.

But objects aren’t the whole story. Although the houses differ slightly from one
another, all the houses share the same list of characteristics. For instance, each
house has a characteristic known as siding color. Each house has another charac-
teristic known as kitchen cabinet style. In your object-oriented program, you need a
master list containing all the characteristics that a house object can possess. This
master list of characteristics is called a class.

So there you have it. Object-oriented programming is misnamed. It should be
called “programming with classes and objects.”

(continued)

But C++ had a flaw. Using C++, you could bypass all the object-oriented features and
write a program by using the old FORTRAN/C programming style. When you started
writing a C++ accounting program, you could take either fork in the road:

• Start by issuing direct “Do this” commands to the computer, saying the mathemati-
cal equivalent of “Print a list of delinquent accounts, and make it snappy.”

• Choose the object-oriented approach and begin by describing what it means to be
an account.

Some people said that C++ offered the best of both worlds, but others argued that the
first world (the world of FORTRAN and C) shouldn’t be part of modern programming. If
you gave a programmer an opportunity to write code either way, the programmer
would too often choose to write code the wrong way.

So in 1995, James Gosling of Sun Microsystems created the language named Java. In cre-
ating Java, Gosling borrowed the look and feel of C++. But Gosling took most of the old
“Do this/Do that” features of C++ and threw them in the trash. Then he added features
that made the development of objects smoother and easier. All in all, Gosling created a
language whose object-oriented philosophy is pure and clean. When you program in
Java, you have no choice but to work with objects. That’s the way it should be.

CHAPTER 1 All about Java 19

Now notice that I put the word classes first. How dare I do this! Well, maybe I’m
not so crazy. Think again about a housing development that’s under construction.
Somewhere on the lot, in a rickety trailer parked on bare dirt, is a master list of
characteristics known as a blueprint. An architect’s blueprint is like an object-
oriented programmer’s class. A blueprint is a list of characteristics that each
house will have. The blueprint says, “siding.” The actual house object has gray
siding. The blueprint says, “kitchen cabinet.” The actual house object has Louis
XIV kitchen cabinets.

The analogy doesn’t end with lists of characteristics. Another important parallel
exists between blueprints and classes. A year after you create the blueprint, you
use it to build ten houses. It’s the same with classes and objects. First, the pro-
grammer writes code to describe a class. Then when the program runs, the com-
puter creates objects from the (blueprint) class.

So that’s the real relationship between classes and objects. The programmer
defines a class, and from the class definition, the computer makes individual
objects.

What’s so good about an object-oriented
language?
Based on the preceding section’s story about home building, imagine that you’ve
already written a computer program to keep track of the building instructions for
houses in a new development. Then, the big boss decides on a modified plan — a
plan in which half the houses have three bedrooms and the other half have four.

If you use the old FORTRAN/C style of computer programming, your instructions
look like this:

Dig a ditch for the basement.

Lay concrete around the sides of the ditch.

Put two-by-fours along the sides for the basement’s frame.

...

This would be like an architect creating a long list of instructions instead of a
blueprint. To modify the plan, you have to sort through the list to find the instruc-
tions for building bedrooms. To make things worse, the instructions could be
scattered among pages 234, 394–410, 739, 10, and 2. If the builder had to decipher
other peoples’ complicated instructions, the task would be ten times harder.

20 PART 1 Getting Started with Java

Starting with a class, however, is like starting with a blueprint. If you decide to
have both three- and four-bedroom houses, you can start with a blueprint called
the house blueprint that has a ground floor and a second floor, but has no indoor
walls drawn on the second floor. Then you make two more second-floor
 blueprints — one for the three-bedroom house and another for the four-bedroom
house. (You name these new blueprints the three-bedroom house blueprint and the
four-bedroom house blueprint.)

Your builder colleagues are amazed with your sense of logic and organization, but
they have concerns. They pose a question. “You called one of the blueprints the
‘three-bedroom house’ blueprint. How can you do this if it’s a blueprint for a
second floor and not for a whole house?”

You smile knowingly and answer, “The three-bedroom house blueprint can say,
‘For info about the lower floors, see the original house blueprint.’ That way, the
three-bedroom house blueprint describes a whole house. The four-bedroom
house blueprint can say the same thing. With this setup, we can take advantage of
all the work we already did to create the original house blueprint and save lots of
money.”

In the language of object-oriented programming, the three- and four-bedroom
house classes are inheriting the features of the original house class. You can also
say that the three- and four-bedroom house classes are extending the original
house class. (See Figure 1-1.)

The original house class is called the superclass of the three- and four-bedroom
house classes. In that vein, the three- and four-bedroom house classes are sub-
classes of the original house class. Put another way, the original house class is
called the parent class of three- and four-bedroom house classes. The three- and
four-bedroom house classes are child classes of the original house class. (Refer to
Figure 1-1.)

Needless to say, your homebuilder colleagues are jealous. A crowd of homebuild-
ers is mobbing around you to hear about your great ideas. So, at that moment, you
drop one more bombshell: “By creating a class with subclasses, we can reuse the
blueprint in the future. If someone comes along and wants a five-bedroom house,
we can extend our original house blueprint by making a five-bedroom house
blueprint. We’ll never have to spend money for an original house blueprint again.”

“But,” says a colleague in the back row, “what happens if someone wants a dif-
ferent first-floor design? Do we trash the original house blueprint or start scrib-
bling all over the original blueprint? That’ll cost big bucks, won’t it?”

CHAPTER 1 All about Java 21

In a confident tone, you reply, “We don’t have to mess with the original house
blueprint. If someone wants a Jacuzzi in his living room, we can make a new,
small blueprint describing only the new living room and call this the Jacuzzi-in-
living-room house blueprint. Then, this new blueprint can refer to the original
house blueprint for info on the rest of the house (the part that’s not in the living
room).” In the language of object-oriented programming, the Jacuzzi-in-living-
room house blueprint still extends the original house blueprint. The Jacuzzi blue-
print is still a subclass of the original house blueprint. In fact, all the terminology
about superclass, parent class, and child class still applies. The only thing that’s
new is that the Jacuzzi blueprint overrides the living room features in the original
house blueprint.

In the days before object-oriented languages, the programming world experi-
enced a crisis in software development. Programmers wrote code, and then dis-
covered new needs, and then had to trash their code and start from scratch. This
problem happened over and over again because the code that the programmers
were writing couldn’t be reused. Object-oriented programming changed all this
for the better (and, as Burd said, Java is “A Great Object-Oriented Language”).

Refining your understanding
of classes and objects
When you program in Java, you work constantly with classes and objects. These
two ideas are really important. That’s why, in this chapter, I hit you over the head
with one analogy after another about classes and objects.

FIGURE 1-1:
Terminology in
object-oriented
programming.

22 PART 1 Getting Started with Java

Close your eyes for a minute and think about what it means for something to be a
chair

A chair has a seat, a back, and legs. Each seat has a shape, a color, a degree of soft-
ness, and so on. These are the properties that a chair possesses. What I describe is
chairness — the notion of something being a chair. In object-oriented terminol-
ogy, I’m describing the Chair class.

Now peek over the edge of this book’s margin and take a minute to look around
your room. (If you’re not sitting in a room right now, fake it.)

Several chairs are in the room, and each chair is an object. Each of these objects is
an example of that ethereal thing called the Chair class. So that’s how it works —
the class is the idea of chairness, and each individual chair is an object.

A class isn’t quite a collection of things. Instead, a class is the idea behind a cer-
tain kind of thing. When I talk about the class of chairs in your room, I’m talking
about the fact that each chair has legs, a seat, a color, and so on. The colors may
be different for different chairs in the room, but that doesn’t matter. When you
talk about a class of things, you’re focusing on the properties that each of the
things possesses.

It makes sense to think of an object as being a concrete instance of a class. In fact,
the official terminology is consistent with this thinking. If you write a Java pro-
gram in which you define a Chair class, each actual chair (the chair that you’re
sitting on, the empty chair right next to you, and so on) is called an instance of the
Chair class.

Here’s another way to think about a class. Imagine a table displaying all three of
your bank accounts. (See Table 1-1.)

TABLE 1-1	 A Table of Accounts
Account Number Type Balance

16-13154-22864-7 Checking 174.87

1011 1234 2122 0000 Credit –471.03

16-17238-13344-7 Savings 247.38

CHAPTER 1 All about Java 23

Think of the table’s column headings as a class, and think of each row of the table
as an object. The table’s column headings describe the Account class.

According to the table’s column headings, each account has an account number, a
type, and a balance. Rephrased in the terminology of object-oriented program-
ming, each object in the Account class (that is, each instance of the Account class)
has an account number, a type, and a balance. So, the bottom row of the table is
an object with account number 16-17238-13344-7. This same object has type Sav-
ings and a balance of 247.38. If you opened a new account, you would have another
object, and the table would grow an additional row. The new object would be an
instance of the same Account class.

What’s Next?
This chapter is filled with general descriptions of things. A general description is
good when you’re just getting started, but you don’t really understand things
until you get to know some specifics. That’s why the next several chapters deal
with specifics.

So please, turn the page. The next chapter can’t wait for you to read it.

CHAPTER 2 All about Software 25

IN THIS CHAPTER

 » Understanding the roles of the
software development tools

 » Selecting the version of Java that’s
right for you

 » Preparing to write and run Java
programs

All about Software

The best way to get to know Java is to do Java. When you’re doing Java, you’re
writing, testing, and running your own Java programs. This chapter gets
you ready to do Java by describing the general software setup — the soft-

ware that you must have on your computer whether you run Windows, Mac,
Linux, or Joe’s Private Operating System. This chapter doesn’t describe the specific
setup instructions for Windows, for a Mac, or for any other system.

For setup instructions that are specific to your system, visit this book’s website
(www.allmycode.com/JavaForDummies).

Quick-Start Instructions
If you’re a seasoned veteran of computers and computing (whatever that means),
and if you’re too jumpy to get detailed instructions from this book’s website, you
can try installing the required software by following this section’s general instruc-
tions. The instructions work for many computers, but not all. And this section
provides no detailed steps, no if-this-then-do-that alternatives, and no this-
works-but-you’re-better-off-doing-something-else tips.

Chapter 2

http://www.allmycode.com/JavaForDummies

26 PART 1 Getting Started with Java

To prepare your computer for writing Java programs, follow these steps:

1. Install the Java Development Kit.

To do so, visit www.oracle.com/technetwork/java/javase/downloads.

Follow the instructions at that website to download and install the newest Java
SE JDK.

Look for the Standard Edition (SE). Don’t bother with the Enterprise Edition (EE)
or any other such edition. Also, go for the JDK, not the JRE. If you see a code
number, such as 9u3, this stands for "the 3rd update of Java 9." Generally,
anything marked Java 9 or later is good for running the examples in this book.

2. Install an integrated development environment.

An integrated development environment (IDE) is a program to help you compose
and test new software. For this book’s examples, you can use almost any IDE
that supports Java.

Here’s a list of the most popular Java IDEs:

• Eclipse

According to www.baeldung.com/java-ides-2016, 48.2 percent of the
world’s Java programmers used the Eclipse IDE in mid-2016.

To download and use Eclipse, follow the instructions at http://eclipse.
org/downloads. Eclipse’s download page may offer you several different
packages, including Eclipse for Java EE, Eclipse for JavaScript, Eclipse for
Java and DSL, and others. To run this book’s examples, you need a
relatively small Eclipse package — the Eclipse IDE for Java Developers.

Eclipse is free for commercial and noncommercial use.

• IntelliJ IDEA

In Baeldung’s survey of Java IDEs (http://www.baeldung.com/java-
ides-2016), IntelliJ IDEA comes in a close second, with 43.6 percent of all
programmers onboard.

When you visit www.jetbrains.com/idea, you can download the
Community Edition (which is free) or the Ultimate Edition (which isn’t free).
To run this book’s examples, you can use the Community Edition. You can
even use the Community Edition to create commercial software!

http://www.oracle.com/technetwork/java/javase/downloads
http://www.baeldung.com/java-ides-2016
http://eclipse.org/downloads
http://eclipse.org/downloads
http://www.baeldung.com/java-ides-2016
http://www.baeldung.com/java-ides-2016
https://www.jetbrains.com/idea/

CHAPTER 2 All about Software 27

• NetBeans

Baeldung’s survey of Java IDEs (http://www.baeldung.com/java-ides-
2016) gives NetBeans a mere 5.9 percent. But NetBeans is Oracle’s official
Java IDE. If the site offers you a choice of download bundles, choose the
Java SE bundle.

To get your own copy of NetBeans, visit https://netbeans.org/
downloads.

NetBeans is free for commercial and noncommercial use.

3. Test your installed software.

What you do in this step depends on which IDE you choose in Step 2. Anyway,
here are some general instructions:

a. Launch your IDE (Eclipse, IntelliJ IDEA, NetBeans, or whatever).

b. In the IDE, create a new Java project.

c. Within the Java project, create a new Java class named Displayer.
(Selecting File ➪  New ➪  Class works in most IDEs.)

d. Edit the new Displayer.java file by typing the code from Listing 3-1 (the
first code listing in Chapter 3).

For most IDEs, you add the code into a big (mostly blank) editor pane. Try to
type the code exactly as you see it in Listing 3-1. If you see an uppercase
letter, type an uppercase letter. Do the same with all lowercase letters.

What? You say you don’t want to type a bunch of code from the book?
Well, all right then! Visit this book’s website (www.allmycode.com/
JavaForDummies) to find out how to download all the code examples and
load them into the IDE of your choice.

e. Run Displayer.java and check to make sure that the run’s output reads
You'll love Java!.

That’s it! But remember: Not everyone (computer geek or not) can follow these
skeletal instructions flawlessly. So you have several alternatives:

 » Visit this book’s website.

Do not pass Go. Do not try this section’s quick-start instructions. Follow
the more detailed instructions that you find at www.allmycode.com/
JavaForDummies.

http://www.baeldung.com/java-ides-2016
http://www.baeldung.com/java-ides-2016
https://netbeans.org/downloads/
https://netbeans.org/downloads/
http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

28 PART 1 Getting Started with Java

 » Try this section’s quick-start instructions.

You can’t hurt anything by trying. If you accidentally install the wrong software,
you can probably leave the wrong software on your computer. (You don’t
have to uninstall it.) If you’re not sure whether you’ve installed the software
correctly, you can always fall back on my website’s detailed instructions.

 » E-mail your questions to me at JavaForDummies@allmycode.com.

 » Tweet me at @allmycode.

 » Visit my /allmycode Facebook page.

I like hearing from readers.

What You Install on Your Computer
I once met a tool-and-die maker. He used tools to make tools (and dies). I was
happy to meet him because I knew that, one day, I’d make an analogy between
computer programmers and tool-and-die makers.

A computer programmer uses existing programs as tools to create new programs.
The existing programs and new programs might perform very different kinds of
tasks. For example, a Java program (a program that you create) might keep track
of a business’s customers. To create that customer-tracking program, you might
use an existing program that looks for errors in your Java code. This general-
purpose error-finding program can find errors in any kind of Java code —
customer-tracking code, weather-predicting code, gaming code, or the code for
an app on your mobile phone.

So how many tools do you need for creating Java programs? As a novice, you need
three tools:

 » You need a compiler.

A compiler takes the Java code that you write and turns that code into a bunch
of instructions called bytecode.

Humans can’t readily compose or decipher bytecode instructions. But certain
software that you run on your computer can interpret and carry out bytecode
instructions.

maiilto:JavaForDummies@allmycode.com
http://twitter.com/allmycode
http://facebook.com/allmycode

CHAPTER 2 All about Software 29

 » You need a Java Virtual Machine (JVM).

A Java Virtual Machine is a piece of software. A Java Virtual Machine interprets
and carries out bytecode instructions.

 » You need an integrated development environment (IDE).

An integrated development environment helps you manage your Java code and
provides convenient ways for you to write, compile, and run your code.

To be honest, you don’t actually need an integrated development environ-
ment. In fact, some programmers take pride in using plain, old text editors
such as Windows Notepad, Macintosh TextEdit, or the vim editor in Linux. But,
as a novice programmer, a full-featured IDE makes your life much, much
easier.

The World Wide Web has free, downloadable versions of each of these tools:

 » When you download the Java SE JDK from Oracle’s website (www.oracle.com/
technetwork/java/javase/downloads/index.html), you get the compiler
and the JVM.

 » When you visit the Eclipse (www.eclipse.org/downloads), IntelliJ IDEA
(www.jetbrains.com/idea, or NetBeans (https://netbeans.org/
downloads) site, you get an IDE.

You may find variations on the picture that I paint in the preceding two bullets.
Many IDEs come with their own JVMs, and Oracle’s website may offer a combined
JDK+NetBeans bundle. Nevertheless, the picture that I paint with these bullets is
useful and reliable. When you follow my instructions, you might end up with two
copies of the JVM, or two IDEs, but that’s okay. You never know when you’ll need
a spare.

This chapter provides background information about software you need on your
computer. But the chapter contains absolutely no detailed instructions to help
you install the software. For detailed instructions, visit this book’s website
(www.allmycode.com/JavaForDummies).

The rest of this chapter describes compilers, JVMs, and IDEs.

What is a compiler?
A compiler takes the Java code that you write and turns that code into a bunch
of instructions called bytecode.

—BARRY BURD, JAVA FOR DUMMIES, 7TH EDITION

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/
https://netbeans.org/downloads
https://netbeans.org/downloads
http://www.allmycode.com/JavaForDummies

30 PART 1 Getting Started with Java

You’re a human being. (Sure, every rule has exceptions. But if you’re reading this
book, you’re probably human.) Anyway, humans can write and comprehend the
code in Listing 2-1.

LISTING 2-1: Looking for a Vacant Room

// This is part of a Java program.

// It's not a complete Java program.

roomNum = 1;

while (roomNum < 100) {

 if (guests[roomNum] == 0) {

 out.println("Room " + roomNum + " is available.");
 exit(0);

 } else {

 roomNum++;
 }

}

out.println("No vacancy");

The Java code in Listing 2-1 checks for vacancies in a small hotel (a hotel with
room numbers 1 to 99). You can’t run the code in Listing 2-1 without adding sev-
eral additional lines. But here in Chapter 2, those additional lines aren’t impor-
tant. What’s important is that, by staring at the code, squinting a bit, and looking
past all the code’s strange punctuation, you can see what the code is trying to do:

Set the room number to 1.

As long as the room number is less than 100,

 Check the number of guests in the room.

 If the number of guests in the room is 0, then

 report that the room is available,

 and stop.

 Otherwise,

 prepare to check the next room by

 adding 1 to the room number.

If you get to the nonexistent room number 100, then

 report that there are no vacancies.

If you don’t see the similarities between Listing 2-1 and its English equivalent,
don’t worry. You’re reading Java For Dummies, 7th Edition, and like most human
beings, you can learn to read and write the code in Listing 2-1. The code in
 Listing 2-1 is called Java source code.

CHAPTER 2 All about Software 31

So here’s the catch: Computers aren’t human beings. Computers don’t normally
follow instructions like the instructions in Listing 2-1. That is, computers don’t
follow Java source code instructions. Instead, computers follow cryptic instruc-
tions like the ones in Listing 2-2.

LISTING 2-2: Listing 2-1 Translated into Java Bytecode

aload_0

iconst_1

putfield Hotel/roomNum I

goto 32

aload_0

getfield Hotel/guests [I

aload_0

getfield Hotel/roomNum I

iaload

ifne 26

getstatic java/lang/System/out Ljava/io/PrintStream;

new java/lang/StringBuilder

dup

ldc "Room "

invokespecial java/lang/StringBuilder/<init>(Ljava/lang/String;)V

aload_0

getfield Hotel/roomNum I

invokevirtual java/lang/StringBuilder/append(I)Ljava/lang/StringBuilder;

ldc " is available."

invokevirtual

 java/lang/StringBuilder/append(Ljava/lang/String;)Ljava/lang/StringBuilder;

invokevirtual java/lang/StringBuilder/toString()Ljava/lang/String;

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

iconst_0

invokestatic java/lang/System/exit(I)V

goto 32

aload_0

dup

getfield Hotel/roomNum I

iconst_1

iadd

putfield Hotel/roomNum I

aload_0

getfield Hotel/roomNum I

(continued)

32 PART 1 Getting Started with Java

bipush 100

if_icmplt 5

getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "No vacancy"

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

return

The instructions in Listing 2-2 aren’t Java source code instructions. They’re Java
bytecode instructions. When you write a Java program, you write source code
instructions (like the instructions in Listing 2-1). After writing the source code,
you run a program (that is, you apply a tool) to your source code. The program is
a compiler. The compiler translates your source code instructions into Java byte-
code instructions. In other words, the compiler takes code that you can write and
understand (like the code in Listing 2-1) and translates it into code that a com-
puter has a fighting chance of carrying out (like the code in Listing 2-2).

You might put your source code in a file named Hotel.java. If so, the compiler
probably puts the Java bytecode in another file named Hotel.class. Normally,
you don’t bother looking at the bytecode in the Hotel.class file. In fact, the com-
piler doesn’t encode the Hotel.class file as ordinary text, so you can’t examine
the bytecode with an ordinary editor. If you try to open Hotel.class with Note-
pad, TextEdit, KWrite, or even Microsoft Word, you’ll see nothing but dots, squig-
gles, and other gobbledygook. To create Listing 2-2, I had to apply yet another
tool to my Hotel.class file. That tool displays a text-like version of a Java byte-
code file. I used Ando Saabas’s Java Bytecode Editor (www.cs.ioc.ee/~ando/jbe).

No one (except for a few crazy programmers in some isolated labs in faraway
places) writes Java bytecode. You run software (a compiler) to create Java byte-
code. The only reason to look at Listing 2-2 is to understand what a hard worker
your computer is.

What is a Java Virtual Machine?
A Java Virtual Machine is a piece of software. A Java Virtual Machine interprets
and carries out bytecode instructions.

—BARRY BURD, JAVA FOR DUMMIES, 7TH EDITION

In the preceding “What is a compiler?” section, I make a big fuss about computers
following instructions like the ones in Listing 2-2. As fusses go, it’s a very nice
fuss. But if you don’t read every fussy word, you may be misguided. The exact

LISTING 2-2: (continued)

http://www.cs.ioc.ee/~ando/jbe

CHAPTER 2 All about Software 33

wording is “ . . . computers follow cryptic instructions like the ones in Listing 2-2.”
The instructions in Listing 2-2 are a lot like instructions that a computer can
 execute, but generally, computers don’t execute Java bytecode instructions.
Instead, each kind of computer processor has its own set of executable instruc-
tions, and each computer operating system uses the processor’s instructions in a
slightly different way.

Here’s a hypothetical situation: The year is 1992 (a few years before Java was
made public) and you run the Linux operating system on a computer that has an
old Pentium processor. Your friend runs Linux on a computer with a different kind
of processor — a PowerPC processor. (In the 1990s, Intel Corporation made Pen-
tium processors, and IBM made PowerPC processors.)

Listing 2-3 contains a set of instructions to display Hello world! on the com-
puter screen.* The instructions work on a Pentium processor running the Linux
operating system.

LISTING 2-3: A Simple Program for a Pentium Processor

.data

msg:

 .ascii "Hello, world!\n"

 len = . - msg

.text

 .global _start

_start:

 movl $len,%edx

 movl $msg,%ecx

 movl $1,%ebx

 movl $4,%eax

 int $0x80

 movl $0,%ebx

 movl $1,%eax

 int $0x80

*I paraphrase these Intel instructions from Konstantin Boldyshev’s Linux
 Assembly HOWTO (http://tldp.org/HOWTO/Assembly-HOWTO/hello.html).

http://tldp.org/HOWTO/Assembly-HOWTO/hello.html

34 PART 1 Getting Started with Java

Listing 2-4 contains another set of instructions to display Hello world! on the
screen.** The instructions in Listing 2-4 work on a PowerPC processor running
Linux.

LISTING 2-4: A Simple Program for a PowerPC Processor

.data

msg:

 .string "Hello, world!\n"

 len = . - msg

.text

 .global _start

_start:

 li 0,4

 li 3,1

 lis 4,msg@ha

 addi 4,4,msg@l

 li 5,len

 sc

 li 0,1

 li 3,1

 sc

The instructions in Listing 2-3 run smoothly on a Pentium processor. But these
instructions mean nothing to a PowerPC processor. Likewise, the instructions in
Listing 2-4 run nicely on a PowerPC, but these same instructions are complete
gibberish to a computer with a Pentium processor. So your friend’s PowerPC
 software might not be available on your computer. And your Intel computer’s
software might not run at all on your friend’s computer.

Now go to your cousin’s house. Your cousin’s computer has a Pentium processor
(just like yours), but your cousin’s computer runs Windows instead of Linux. What
does your cousin’s computer do when you feed it the Pentium code in Listing 2-3?
It screams, “Not a valid Win32 application” or “Windows can’t open this file.”
What a mess!

**I paraphrase the PowerPC code from Hollis Blanchard’s PowerPC Assembly
page (www.ibm.com/developerworks/library/l-ppc). Hollis also reviewed and
critiqued this “What is a Java Virtual Machine?” section for me. Thank you,
Hollis.

http://www.ibm.com/developerworks/library/l-ppc

CHAPTER 2 All about Software 35

Java bytecode creates order from all this chaos. Unlike the code in Listings 2-3
and 2-4, Java bytecode isn’t specific to one kind of processor or to one operating
system. Instead, any kind of computer can have a Java Virtual Machine, and Java
bytecode instructions run on any computer’s Java Virtual Machine. The JVM that
runs on a Pentium with Linux translates Java bytecode instructions into the
kind of code you see in Listing 2-3. And the JVM that runs on a PowerPC with
Linux translates Java bytecode instructions into the kind of code you see in
Listing 2-4.

If you write a Java program and compile that Java program into bytecode, then the
JVM on your computer can run the bytecode, the JVM on your friend’s computer can
run the bytecode, the JVM on your grandmother’s supercomputer can run the byte-
code, and with any luck, the JVM on your cellphone or tablet can run the bytecode.

For a look at some Java bytecode, see Listing 2-2. But remember: You never have
to write or decipher Java bytecode. Writing bytecode is the compiler’s job. Deci-
phering bytecode is the Java Virtual Machine’s job.

With Java, you can take a bytecode file that you created with a Windows computer,
copy the bytecode to who-knows-what kind of computer, and then run the byte-
code with no trouble at all. That’s one of the many reasons why Java has become
popular so quickly. This outstanding feature, which gives you the ability to run
code on many different kinds of computers, is called portability.

What makes Java bytecode so versatile? This fantastic universality enjoyed by Java
bytecode programs comes from the Java Virtual Machine. The Java Virtual Machine
is one of those three tools that you must have on your computer.

Imagine that you’re the Windows representative to the United Nations Security
Council. (See Figure 2-1.) The Macintosh representative is seated to your right,
and the Linux representative is on your left. (Naturally, you don’t get along with
either of these people. You’re always cordial to one another, but you’re never sin-
cere. What do you expect? It’s politics!) The distinguished representative from
Java is at the podium. The Java representative is speaking in bytecode, and neither
you nor your fellow ambassadors (Mac and Linux) understand a word of Java
bytecode.

But each of you has an interpreter. Your interpreter translates from bytecode to
Windows while the Java representative speaks. Another interpreter translates
from bytecode to Macintosh-ese. And a third interpreter translates bytecode into
Linux-speak.

36 PART 1 Getting Started with Java

Think of your interpreter as a virtual ambassador. The interpreter doesn’t really
represent your country, but the interpreter performs one of the important tasks
that a real ambassador performs. The interpreter listens to bytecode on your
behalf. The interpreter does what you would do if your native language were
Java bytecode. The interpreter pretends to be the Windows ambassador and sits
through the boring bytecode speech, taking in every word and processing each
word in some way or another.

You have an interpreter — a virtual ambassador. In the same way, a Windows
computer runs its own bytecode-interpreting software. That software is the Java
Virtual Machine.

A Java Virtual Machine is a proxy, an errand boy, a go-between. The JVM serves as
an interpreter between Java’s run-anywhere bytecode and your computer’s own
system. While it runs, the JVM walks your computer through the execution of
bytecode instructions. The JVM examines your bytecode, bit by bit, and carries out
the instructions described in the bytecode. The JVM interprets bytecode for your
Windows system, your Mac, or your Linux box, or for whatever kind of computer
you’re using. That’s a good thing. It’s what makes Java programs more portable
than programs in any other language.

FIGURE 2-1:
An imaginary

meeting of the
UN Security

Council.

CHAPTER 2 All about Software 37

WHAT ON EARTH IS JAVA 2
STANDARD EDITION 1.2?
If you poke around the web looking for Java tools, you find things with all kinds of
strange names. You find the Java Development Kit, the Software Development Kit, the
Java Runtime Environment, and other confusing names.

• The names Java Development Kit (JDK) and Software Development Kit (SDK) stand for
different versions of the same toolset — a toolset whose key component is a Java
compiler.

• The name Java Runtime Environment (JRE) stands for a toolset whose key component
is a Java Virtual Machine.

If you install the JDK on your computer, the JRE comes along with it. You can also
get the JRE on its own. In fact, you can have many combinations of the JDK and JRE
on your computer. For example, my Windows computer currently has JDK 1.6, JDK
1.8, and JRE 8 in its c:\program files\Java directory and has JDK 9 in its
c:\program files (x86)\Java directory. Only occasionally do I run into
any version conflicts. If you suspect that you’re experiencing a version conflict,
it’s best to uninstall all JDK and JRE versions except the latest (for example, JDK 9
and JRE 9).

The numbering of Java versions can be confusing. Instead of “Java 1,” “Java 2,” and
“Java 3,” the numbering of Java versions winds through an obstacle course. This side-
bar’s figure describes the development of new Java versions over time. Each Java ver-
sion has several names. The product version is an official name that’s used for the world
in general, and the developer version is a number that identifies versions so that pro-
grammers can keep track of them. (In casual conversation, programmers use all kinds
of names for the various Java versions.) The code name is a more playful name that
 identifies a version while it’s being created.

The asterisks in the figure mark changes in the formulation of Java product-version
names. Back in 1996, the product versions were Java Development Kit 1.0 and Java
Development Kit 1.1. In 1998, someone decided to christen the product Java 2 Standard
Edition 1.2, which confuses everyone to this day. At the time, anyone using the term Java
Development Kit was asked to use Software Development Kit (SDK) instead.

(continued)

38 PART 1 Getting Started with Java

In 2004 the 1. business went away from the platform version name, and in 2006 Java
platform names lost the 2 and the .0.

By far the most significant changes for Java programmers came about in 2004. With the
release of J2SE 5.0, the overseers of Java made changes to the language by adding new
features — features such as generic types, annotations, and the enhanced for state-
ment. (To see Java annotations in action, go to Chapters 8, 9, and 16. For examples of
the use of the enhanced for statement and generic types, see Chapters 11 and 12.)

Most of the programs in this book run only with Java 5.0 or later. They don’t run with
any version earlier than Java 5.0. Particularly, they don’t run with Java 1.4 or Java 1.4.2.
Some of this book’s examples don’t run with Java 9 or lower. But don’t worry too much
about Java version numbers. Java 6 or 7 is better than no Java at all. You can learn a lot
about Java without having the latest Java version.

(continued)

CHAPTER 2 All about Software 39

Developing software
All this has happened before, and it will all happen again.

—PETER PAN (J.M. BARRIE) AND BATTLESTAR GALACTICA
(2003–2009, NBC UNIVERSAL)

When you create a Java program, you repeat the same steps over and over again.
Figure 2-2 illustrates the cycle.

First, you write a program. After writing the first draft, you repeatedly compile,
run, and modify the program. With a little experience, the compile and run
steps become very easy. In many cases, one mouse click starts the compilation or
the run.

However, writing the first draft and modifying the code are not 1-click tasks.
Developing code requires time and concentration.

Never be discouraged when the first draft of your code doesn’t work. For that
matter, never be discouraged when the 25th draft of your code doesn’t work.
Rewriting code is one of the most important things you can do (aside from ensur-
ing world peace).

For detailed instructions on compiling and running Java programs, visit this
book’s website (www.allmycode.com/JavaForDummies).

When people talk about writing programs, they use the wording in Figure 2-2.
They say, “You compile the code” and “You run the code.” But the “you” isn’t
always accurate, and the “code” differs slightly from one part of the cycle to the
next. Figure 2-3 describes the cycle from Figure 2-2 in a bit more detail.

FIGURE 2-2:
Developing a Java

program.

http://www.allmycode.com/JavaForDummies

40 PART 1 Getting Started with Java

For most people’s needs, Figure 2-3 contains too much information. If I click a Run
icon, I don’t have to remember that the computer runs code on my behalf. And for
all I care, the computer can run my original Java code or some bytecode knockoff
of my original Java code. In fact, many times in this book, I casually write "when
you run your Java code," or "when the computer runs your Java program." You can
live a very happy life without looking at Figure 2-3. The only use for Figure 2-3 is
to help you if the loose wording in Figure 2-2 confuses you. If Figure 2-2 doesn’t
confuse you, ignore Figure 2-3.

What is an integrated development
environment?
“An integrated development environment helps you manage your Java code
and provides convenient ways for you to write, compile, and run your code.”

—BARRY BURD, JAVA FOR DUMMIES, 7TH EDITION

In the olden days, writing and running a Java program involved opening several
windows — a window for typing the program, another window for running the
program, and maybe a third window to keep track of all the code you’ve written.
(See Figure 2-4.)

An integrated development environment seamlessly combines all this functional-
ity into one well-organized application. (See Figure 2-5.)

FIGURE 2-3:
Who does what

with which code?

CHAPTER 2 All about Software 41

Java has its share of integrated development environments such as Eclipse, IntelliJ
IDEA, and NetBeans. Many environments have drag-and-drop components so
that you can design your graphical interface visually. (See Figure 2-6.)

To run a program, you might click a toolbar button or choose Run from a menu.
To compile a program, you might not have to do anything at all. (You might not
even have to issue a command. Some IDEs compile your code automatically while
you type it.)

For help with installing and using an integrated development environment, see
this book’s website (www.allmycode.com/JavaForDummies).

FIGURE 2-4:
Developing code

without an
integrated

development
environment.

FIGURE 2-5:
Developing code
with the Eclipse

integrated
development
environment.

http://www.allmycode.com/JavaForDummies

42 PART 1 Getting Started with Java

FIGURE 2-6:
Using the

drag-and-drop
Swing GUI

Builder in the
NetBeans IDE.

CHAPTER 3 Using the Basic Building Blocks 43

IN THIS CHAPTER

 » Speaking the Java language: The API
and the language specification

 » Taking a first glance at Java code

 » Understanding the parts of a simple
program

 » Documenting your code

Using the Basic Building
Blocks

“Bce мыcли, кoтopыe имeют oгpoмныe пocлeдcтвия вceгдa пpocты.
(All great ideas are simple.)”

—LEO TOLSTOY

The quotation applies to all kinds of things — things like life, love, and com-
puter programming. That’s why this chapter takes a multilayered approach.
In this chapter, you get your first details about Java programming. And in

discovering details, you’ll see the simplicities.

Speaking the Java Language
If you try to picture in your mind the entire English language, what do you see?
Maybe you see words, words, words. (That’s what Hamlet saw.) Looking at the
language under a microscope, you see one word after another. The bunch-of-words
image is fine, but if you step back a bit, you may see two other things:

 » The language’s grammar

 » Thousands of expressions, sayings, idioms, and historical names

Chapter 3

44 PART 1 Getting Started with Java

The first category (the grammar) includes rules like, “The verb agrees with the
noun in number and person.” The second category (expressions, sayings, and
stuff) includes knowledge like, “Julius Caesar was a famous Roman emperor, so
don’t name your son Julius Caesar, unless you want him to get beaten up every day
after school.”

The Java programming language has all the aspects of a spoken language like
English. Java has words, grammar, commonly used names, stylistic idioms, and
other such elements.

The grammar and the common names
The people at Sun Microsystems who created Java thought of Java as having two
parts. Just as English has its grammar and commonly used names, the Java
 programming language has its specification (its grammar) and its application
programming interface (its commonly used names). Whenever I write Java pro-
grams, I keep two important pieces of documentation — one for each part of the
language — on my desk:

 » The Java Language Specification: This documentation includes rules like
this: “Always put an open parenthesis after the word for” and “Use an asterisk
to multiply two numbers.”

 » The application programming interface: Java’s application programming
interface (API) contains thousands of names that were added to Java after the
language’s grammar was defined. These names range from the commonplace
to the exotic. For example, one name — the name JFrame — represents a
window on your computer’s screen. A more razzle-dazzle name — pow —
helps you raise 5 to the tenth power, or raise whatever to the whatever else
power. Other names help you listen for the user’s button clicks, query
databases, and do all kinds of useful things.

You can download the language specification, the API documents, and all the
other Java documentation (or view the documents online) by poking around at
http://docs.oracle.com/javase/specs.

The first part of Java, the language specification, is relatively small. That doesn’t
mean you won’t take plenty of time finding out how to use the rules in the lan-
guage specification. Other programming languages, however, have double, triple,
or ten times the number of rules.

The second part of Java — the API — can be intimidating because it’s so large. The
API contains thousands and thousands of names and keeps growing with each
new Java language release. Pretty scary, eh? Well, the good news is that you don’t

http://docs.oracle.com/javase/specs

CHAPTER 3 Using the Basic Building Blocks 45

have to memorize anything in the API. Nothing. None of it. You can look up the
stuff you need to use in the documentation and ignore the stuff you don’t need.
What you use often, you’ll remember. What you don’t use often, you’ll forget (like
any other programmer).

No one knows all there is to know about the Java API. If you’re a Java programmer
who frequently writes programs that open new windows, you know how to use the
API JFrame class. If you seldom write programs that open windows, the first few
times you need to create a window, you can look up the JFrame class in the API
documentation. My guess is that if you prevented a typical Java programmer from
looking up anything in the API documentation, the programmer would be able to
use less than 2 percent of all the names in the Java API.

You may love the For Dummies style, but unfortunately, Java’s official API
 documentation isn’t written that way. The API documentation is both concise and
precise. For some help deciphering the API documentation’s language and style,
see this book’s website (www.allmycode.com/JavaForDummies).

In a way, nothing about the Java API is special. Whenever you write a Java
 program — even the smallest, simplest Java program — you create a class that’s
on par with any of the classes defined in the official Java API. The API is just a set
of classes and other names that were created by ordinary programmers who hap-
pen to participate in the official Java Community Process (JCP) and in the OpenJDK
Project. Unlike the names you create, the names in the API are distributed with
every version of Java. (I’m assuming that you, the reader, are not a participant in
the Java Community Process or the OpenJDK Project. But, with a fine book like Java
For Dummies, 7th Edition, one never knows.)

If you’re interested in the JCP’s activities, visit www.jcp.org. If you’re interested
in the OpenJDK Project, visit http://openjdk.java.net.

The folks at the JCP don’t keep the Java programs in the official Java API a secret.
If you want, you can look at all these programs. When you install Java on your
computer, the installation puts a file named src.zip on your hard drive. You can
open src.zip with your favorite unzipping program. There, before your eyes, is
all the Java API code.

The words in a Java program
A hard-core Javateer will say that the Java programming language has two kinds
of words: keywords and identifiers. This is true. But the bare truth, without any
other explanation, is sometimes misleading. So I recommend dressing up the
truth a bit and thinking in terms of three kinds of words: keywords, identifiers
that ordinary programmers like you and I create, and identifiers from the API.

http://www.allmycode.com/JavaForDummies
http://www.jcp.org
http://openjdk.java.net

46 PART 1 Getting Started with Java

The differences among these three kinds of words are similar to the differences
among words in the English language. In the sentence “Sam is a person,” the
word person is like a Java keyword. No matter who uses the word person, the word
always means roughly the same thing. (Sure, you can think of bizarre exceptions
in English usage, but please don’t.)

The word Sam is like a Java identifier because Sam is a name for a particular per-
son. Words like Sam, Dinswald, and McGillimaroo aren’t prepacked with meaning in
the English language. These words apply to different people depending on the
context and become names when parents pick one for their newborn kid.

Now consider the sentence “Julius Caesar is a person.” If you utter this sentence,
you’re probably talking about the fellow who ruled Rome until the Ides of March.
Although the name Julius Caesar isn’t hard-wired into the English language,
almost everyone uses the name to refer to the same person. If English were a pro-
gramming language, the name Julius Caesar would be an API identifier.

So here’s how I, in my mind, divide the words in a Java program into categories:

 » Keywords: A keyword is a word that has its own special meaning in the Java
programming language, and that meaning doesn’t change from one program
to another. Examples of keywords in Java are if, else, and do.

The JCP committee members, who have the final say on what constitutes a
Java program, have chosen all the Java keywords. If you think about the two
parts of Java, which I discuss earlier, in the section “The grammar and the
common names,” the Java keywords belong solidly to the language
specification.

 » Identifiers: An identifier is a name for something. The identifier’s meaning can
change from one program to another, but some identifiers’ meanings tend to
change more:

• Identifiers created by you and me: As a Java programmer (yes, even as a
novice Java programmer), you create new names for classes and other
items you describe in your programs. Of course, you may name something
Prime, and the guy writing code two cubicles down the hall can name
something else Prime. That’s okay because Java doesn’t have a predeter-
mined meaning for Prime. In your program, you can make Prime stand for
the Federal Reserve’s prime rate. And the guy down the hall can make
Prime stand for the “bread, roll, preserves, and prime rib.” A conflict
doesn’t arise, because you and your coworker are writing two different
Java programs.

 » Identifiers from the API: The JCP members have created names for many things
and thrown tens of thousands of these names into the Java API. The API

CHAPTER 3 Using the Basic Building Blocks 47

comes with each version of Java, so these names are available to anyone
who writes a Java program. Examples of such names are String, Integer,
JWindow, JButton, JTextField, and File.

Strictly speaking, the meanings of the identifiers in the Java API aren’t cast in
stone. Although you can make up your own meanings for JButton or JWindow, this
isn’t a good idea. If you did, you would confuse the dickens out of other program-
mers, who are used to the standard API meanings for these familiar identifier
names. But even worse, when your code assigns a new meaning to an identifier
like JButton, you lose any computational power that was created for the identifier
in the API code. The programmers at Sun Microsystems, Oracle, the Java Com-
munity Process, and the OpenJDK Project did all the work of writing Java code to
handle buttons. If you assign your own meaning to JButton, you’re turning your
back on all the progress made in creating the API.

To see the list of Java keywords, visit this book’s website: www.allmycode.com/
JavaForDummies.

Checking Out Java Code for the First Time
The first time you look at somebody else’s Java program, you may tend to feel a bit
queasy. The realization that you don’t understand something (or many things) in
the code can make you nervous. I’ve written hundreds (maybe thousands) of Java
programs, but I still feel insecure when I start reading someone else’s code.

The truth is that finding out about a Java program is a bootstrapping experience.
First, you gawk in awe of the program. Then you run the program to see what it
does. Then you stare at the program for a while or read someone’s explanation of
the program and its parts. Then you gawk a little more and run the program again.
Eventually, you come to terms with the program. (Don’t believe the wise guys who
say they never go through these steps. Even the experienced programmers
approach a new project slowly and carefully.)

In Listing 3-1, you get a blast of Java code. (Like all novice programmers, you’re
expected to gawk humbly at the code.) Hidden in the code, I’ve placed some
important ideas, which I explain in detail in the next section. These ideas include
the use of classes, methods, and Java statements.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

48 PART 1 Getting Started with Java

LISTING 3-1: The Simplest Java Program

public class Displayer {

 public static void main(String args[]) {

 System.out.println("You'll love Java!");

 }

}

You don’t have to type the code in Listing 3-1 (or in any of this book’s listings). To
download all the code in this book, visit the book’s website (www.allmycode.com/
JavaForDummies).

When you run the program from Listing 3-1, the computer displays You'll love
Java! (Figure 3-1 shows the output of the Displayer program when you use the
Eclipse IDE.) Now, I admit that writing and running a Java program is a lot of work
just to get You'll love Java! to appear on somebody’s computer screen, but
every endeavor has to start somewhere.

To see how to run the code in Listing 3-1, visit this book’s website (www.
allmycode.com/JavaForDummies).

In the following section, you do more than just admire the program’s output.
After you read the following section, you actually understand what makes the
program in Listing 3-1 work.

Understanding a Simple Java Program
This section presents, explains, analyzes, dissects, and otherwise demystifies the
Java program shown previously in Listing 3-1.

FIGURE 3-1:
I use Eclipse to

run the program
in Listing 3-1.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 3 Using the Basic Building Blocks 49

The Java class
Because Java is an object-oriented programming language, your primary goal is to
describe classes and objects. (If you’re not convinced about this, read the sections
on object-oriented programming in Chapter 1.)

On those special days when I’m feeling sentimental, I tell people that Java is more
pure in its object-orientation than many other so-called object-oriented lan-
guages. I say this because, in Java, you can’t do anything until you create a class
of some kind. It’s like being on Jeopardy! and hearing Alex Trebek say, “Let’s go to
a commercial” and then interrupting him by saying, “I’m sorry, Alex. You can’t
issue an instruction without putting your instruction inside a class.”

The code in Listing 3-1 is a Java program, and that program describes a class. I
wrote the program, so I get to make up a name for my new class. I chose the name
Displayer because the program displays a line of text on the computer screen.
That’s why the first line in Listing 3-1 contains the words class Displayer. (See
Figure 3-2.)

The first two words in Listing 3-1, public and class, are Java keywords. (See the
section “The words in a Java program,” earlier in this chapter.) No matter who
writes a Java program, the words public and class are always used in the same
way. On the other hand, Displayer in Listing 3-1 is an identifier. I made up the
word Displayer while I was writing this chapter. Displayer is the name of a par-
ticular class — the class that I’m creating by writing this program.

FIGURE 3-2:
A Java program is

a class.

50 PART 1 Getting Started with Java

This book is filled with talk about classes, but for the best description of a Java
class (the reason for using the word class in Listing 3-1), visit Chapter 7. The
word public means that other Java classes (classes other than the Displayer
class in Listing 3-1) can use the features declared in Listing 3-1. For more details
about the meaning of public and the use of the word public in a Java program,
see Chapters 7 and 14.

tHE jAVA PROGRAMMING LANGUAGE IS cASe-sEnsITiVE. If you change a lower-
case letter in a word to an UpperCase letter, you can change the word’s meaning.
cHANGING case can make the entire word go from being meaningful to being
meaningless. In the first line of Listing 3-1, you can’t replace class with Class. iF
YOU DO, THE WHOLE PROGRAM STOPS WORKING. The same holds true, to some
extent, for the name of a file containing a particular class. For example, the name
of the class in Listing 3-1 is Displayer, starting with an uppercase letter D. So it’s
a good idea to save the code of Listing 3-1 in a file named Displayer.java, start-
ing with an uppercase letter D.

Normally, if you define a class named DogAndPony, the class’s Java code is in a file
named DogAndPony.java, spelled and capitalized exactly the same way that the
class name is spelled and capitalized. In fact, this file-naming convention is man-
datory for most examples in this book.

The Java method
You’re working as an auto mechanic in an upscale garage. Your boss, who’s always
in a hurry and has a habit of running words together, says, “fixTheAlternator on
that junkyOldFord.” Mentally, you run through a list of tasks. “Drive the car into
the bay, lift the hood, get a wrench, loosen the alternator belt,” and so on. Three
things are going on here:

 » You have a name for what you’re supposed to do. The name is
fixTheAlternator.

 » In your mind, you have a list of tasks associated with the name
fixTheAlternator. The list includes “Drive the car into the bay, lift the hood,
get a wrench, loosen the alternator belt,” and so on.

 » You have a grumpy boss who’s telling you to do all this work. Your boss
gets you working by saying, “fixTheAlternator.” In other words, your boss gets
you working by saying the name of what you’re supposed to do.

In this scenario, using the word method wouldn’t be a big stretch. You have a
method for doing something with an alternator. Your boss calls that method into
action, and you respond by doing all the things in the list of instructions that you
associate with the method.

CHAPTER 3 Using the Basic Building Blocks 51

If you believe all that (and I hope you do), you’re ready to read about Java meth-
ods. In Java, a method is a list of things to do. Every method has a name, and you
tell the computer to do the things in the list by using the method’s name in your
program.

I’ve never written a program to get a robot to fix an alternator. But, if I did, the
program might include a fixTheAlternator method. The list of instructions in
my fixTheAlternator method would look something like the text in Listing 3-2.

Don’t scrutinize Listings 3-2 and 3-3 too carefully. All the code in Listings 3-2
and 3-3 is fake! I made up this code so that it looks a lot like real Java code, but it’s
not real. What’s more important, the code in Listings 3-2 and 3-3 isn’t meant to
illustrate all the rules about Java. So, if you have a grain of salt handy, take it with
Listings 3-2 and 3-3.

LISTING 3-2: A Method Declaration

void fixTheAlternator(onACertainCar) {

 driveInto(car, bay);

 lift(hood);

 get(wrench);

 loosen(alternatorBelt);

 ...

}

Somewhere else in my Java code (somewhere outside of Listing 3-2), I need an
instruction to call my fixTheAlternator method into action. The instruction to
call the fixTheAlternator method into action may look like the line in
Listing 3-3.

LISTING 3-3: A Method Call

fixTheAlternator(junkyOldFord);

Now that you have a basic understanding of what a method is and how it works,
you can dig a little deeper into some useful terminology:

 » If I’m being lazy, I refer to the code in Listing 3-2 as a method. If I’m not being
lazy, I refer to this code as a method declaration.

 » The method declaration in Listing 3-2 has two parts. The first line (the part
with fixTheAlternator in it, up to but not including the open curly brace) is

52 PART 1 Getting Started with Java

a method header. The rest of Listing 3-2 (the part surrounded by curly braces)
is a method body.

 » The term method declaration distinguishes the list of instructions in Listing 3-2
from the instruction in Listing 3-3, which is known as a method call.

A method’s declaration tells the computer what happens if you call the method into
action. A method call (a separate piece of code) tells the computer to actually call
the method into action. A method’s declaration and the method’s call tend to be in
different parts of the Java program.

The main method in a program
Figure 3-3 has a copy of the code from Listing 3-1. The bulk of the code contains
the declaration of a method named main. (Just look for the word main in the code’s
method header.) For now, don’t worry about the other words in the method
header: public, static, void, String, and args. I explain these words in the next
several chapters.

Like any Java method, the main method is a recipe:

How to make biscuits:

 Heat the oven.

 Roll the dough.

 Bake the rolled dough.

FIGURE 3-3:
The main

method.

CHAPTER 3 Using the Basic Building Blocks 53

or

How to follow the main instructions for a Displayer:

 Print "You'll love Java!" on the screen.

The word main plays a special role in Java. In particular, you never write code that
explicitly calls a main method into action. The word main is the name of the method
that is called into action automatically when the program begins running.

Look back at Figure 3-1. When the Displayer program runs, the computer auto-
matically finds the program’s main method and executes any instructions inside
the method’s body. In the Displayer program, the main method’s body has only
one instruction. That instruction tells the computer to print You'll love Java! on
the screen. So in Figure 3-1, You'll love Java! appears on the computer screen.

The instructions in a method aren’t executed until the method is called into action.
But, if you give a method the name main, that method is called into action
automatically.

Almost every computer programming language has something akin to Java’s
methods. If you’ve worked with other languages, you may remember terms like
subprograms, procedures, functions, subroutines, subprocedures, and PERFORM
statements. Whatever you call it in your favorite programming language, a method
is a bunch of instructions collected and given a new name.

How you finally tell the computer
to do something
Buried deep in the heart of Listing 3-1 is the single line that actually issues a direct
instruction to the computer. The line, which is highlighted in Figure 3-4, tells the
computer to display You'll love Java! This line is a statement. In Java, a state-
ment is a direct instruction that tells the computer to do something (for example,
display this text, put 7 in that memory location, make a window appear).

FIGURE 3-4:
A Java statement.

54 PART 1 Getting Started with Java

In System.out.println, the next-to-last character is a lowercase letter l, not a
digit 1.

Of course, Java has different kinds of statements. A method call, which I introduce
in the earlier “The Java method” section, is one of the many kinds of Java state-
ments. Listing 3-3 shows you what a method call looks like, and Figure 3-4 also
contains a method call that looks like this:

System.out.println("You'll love Java!");

When the computer executes this statement, the computer calls a method named
System.out.println into action. (Yes, in Java, a name can have dots in it. The
dots mean something.)

I said it already, but it’s worth repeating: In System.out.println, the next-to-last
character is a lowercase letter l (as in the word line), not a digit 1 (as in the number
one). If you use a digit 1, your code won’t work. Just think of println as a way of
saying “print line” and you won’t have any problem.

To learn the meaning behind the dots in Java names, see Chapter 7.

Figure 3-5 illustrates the System.out.println situation. Actually, two methods
play active roles in the running of the Displayer program. Here’s how they work:

 » There’s a declaration for a main method. I wrote the main method myself.
This main method is called automatically whenever I run the Displayer
program.

 » There’s a call to the System.out.println method. The method call for the
System.out.println method is the only statement in the body of the main
method. In other words, calling the System.out.println method is the only
item on the main method’s to-do list.

The declaration for the System.out.println method is buried inside the
official Java API. For a refresher on the Java API, see the sections “The gram-
mar and the common names” and “The words in a Java program,” earlier in
this chapter.

When I say things like, “System.out.println is buried inside the API,” I’m not
doing justice to the API. True, you can ignore all the nitty-gritty Java code inside
the API. All you need to remember is that System.out.println is defined some-
where inside that code. But I’m not being fair when I make the API code sound like
something magical. The API is just another bunch of Java code. The statements in
the API that tell the computer what it means to carry out a call to System.out.
println look a lot like the Java code in Listing 3-1.

CHAPTER 3 Using the Basic Building Blocks 55

In Java, each statement (like the boxed line in Figure 3-4) ends with a semicolon.
Other lines in Figure 3-4 don’t end with semicolons, because the other lines in
Figure 3-4 aren’t statements. For instance, the method header (the line with the
word main in it) doesn’t directly tell the computer to do anything. The method
header announces, “Just in case you ever want to do main, the next few lines of
code tell you how to do it.”

Every complete Java statement ends with a semicolon.

Curly braces
Long ago, or maybe not so long ago, your schoolteachers told you how useful out-
lines are. With an outline, you can organize thoughts and ideas, help people see
forests instead of trees, and generally show that you’re a member of the Tidy
Persons Club. Well, a Java program is like an outline. The program in Listing 3-1
starts with a header line that says, “Here comes a class named Displayer.” After
that header, a subheader announces, “Here comes a method named main.”

FIGURE 3-5:
Calling the

System.out.
println
method.

56 PART 1 Getting Started with Java

Now, if a Java program is like an outline, why doesn’t a program look like an out-
line? What takes the place of the Roman numerals, capital letters, and other items?
The answer is twofold:

 » In a Java program, curly braces enclose meaningful units of code.

 » You, the programmer, can (and should) indent lines so that other program-
mers can see at a glance the outline form of your code.

In an outline, everything is subordinate to the item in Roman numeral I. In a Java
program, everything is subordinate to the top line — the line with class in it. To
indicate that everything else in the code is subordinate to this class line, you use
curly braces. Everything else in the code goes inside these curly braces. (See
Listing 3-4.)

LISTING 3-4: Curly Braces for a Java Class

public class Displayer {

 public static void main(String args[]) {

 System.out.println("You'll love Java!");

 }

}

In an outline, some stuff is subordinate to a capital letter A item. In a Java pro-
gram, some lines are subordinate to the method header. To indicate that some-
thing is subordinate to a method header, you use curly braces. (See Listing 3-5.)

LISTING 3-5: Curly Braces for a Java Method

public class Displayer {

 public static void main(String args[]) {

 System.out.println("You'll love Java!");

 }

}

In an outline, some items are at the bottom of the food chain. In the Displayer
class, the corresponding line is the line that begins with System.out.println.
Accordingly, this System.out.println line goes inside all the other curly braces
and is indented more than any other line.

CHAPTER 3 Using the Basic Building Blocks 57

Never lose sight of the fact that a Java program is, first and foremost, an outline.

If you put curly braces in the wrong places or omit curly braces where the braces
should be, your program probably won’t work at all. If your program works, it’ll
probably work incorrectly.

If you don’t indent lines of code in an informative manner, your program will still
work correctly, but neither you nor any other programmer will be able to figure
out what you were thinking when you wrote the code.

If you’re a visual thinker, you can picture outlines of Java programs in your head.
One friend of mine visualizes an actual numbered outline morphing into a Java
program. (See Figure 3-6.) Another person, who shall remain nameless, uses
more bizarre imagery. (See Figure 3-7.)

I appreciate a good excuse as much as the next guy, but failing to indent your Java
code is inexcusable. In fact, many Java IDEs have tools to indent your code auto-
matically. Visit this book’s website (www.allmycode.com/JavaForDummies) for
more information.

FIGURE 3-6:
An outline turns

into a Java
program.

http://www.allmycode.com/JavaForDummies

58 PART 1 Getting Started with Java

Here are some things for you to try to help you understand the material in this
section. If trying these things builds your confidence, that’s good. If trying these
things makes you question what you’ve read, that’s good too. If trying these
things makes you nervous, don’t be discouraged. You can find answers and other
help at this book’s website (www.allmycode.com/JavaForDummies). You can also
email me with your questions (JavaForDummies@allmycode.com).

 » If you’ve downloaded the code from this book’s website, import Listing 3-1
(from the downloaded 03-01 folder) into your IDE. If you don’t plan to
download the code, create a new project in your IDE. In the new project,
create a class named Displayer with the code from Listing 3-1. With the
downloaded project, or with your own, newly created project, run the
program and look for the words You'll love Java! in the output.

 » Try running the code in Listing 3-1 with the text "You'll love Java!"
changed to "No more baked beans!". What happens?

 » Try to run the code in Listing 3-1 with the word public (all lowercase)
changed to Public (starting with an uppercase letter). What happens?

 » Try to run the code in Listing 3-1 with the word main (all lowercase) changed
to Main (starting with an uppercase letter). What happens?

 » Try to run the code in Listing 3-1 with the word System (starting with an
uppercase letter) changed to system (all lowercase). What happens?

 » Try to run the code in Listing 3-1 with the indentation changed. For example,
don’t indent any lines. Also, for good measure, remove the line breaks
between the first curly brace and the word public (so that the code reads
public class Displayer { public ...). What happens?

 » Try to run the code in Listing 3-1 with the word println changed to print1n
(with the digit 1 near the end). What happens?

 » Try to run the code in Listing 3-1 with the semicolon missing. What happens?

FIGURE 3-7:
A class is bigger

than a method; a
method is bigger

than a statement.

http://www.allmycode.com/JavaForDummies
mailto:JavaForDummies@allmycode.com

CHAPTER 3 Using the Basic Building Blocks 59

 » Try to run the code in Listing 3-1 with additional semicolons added at the ends
of some of the lines. What happens?

 » Try to run the code in Listing 3-1 with the text "You'll love Java!"
changed to " Use a straight quote \", not a curly quote \u201D".
What happens?

And Now, a Few Comments
People gather around campfires to hear the old legend about a programmer whose
laziness got her into trouble. To maintain this programmer’s anonymity, I call her
Jane Pro. Jane worked many months to create the holy grail of computing: a pro-
gram that thinks on its own. If completed, this program could work indepen-
dently, learning new things without human intervention. Day after day, night
after night, Jane Pro labored to give the program that spark of creative, indepen-
dent thought.

One day, when she was almost finished with the project, she received a disturbing
piece of paper mail from her health insurance company. No, the mail wasn’t about
a serious illness. It was about a routine office visit. The insurance company’s
claim form had a place for Jane’s date of birth, as if her date of birth had changed
since the last time she sent in a claim. She had absentmindedly scribbled 2016 as
her year of birth, so the insurance company refused to pay the bill.

Jane dialed the insurance company’s phone number. Within 20 minutes, she was
talking to a live person. “I’m sorry,” said the live person. “To resolve this issue,
you must dial a different number.” Well, you can guess what happened next. “I’m
sorry. The other operator gave you the wrong number.” And then, “I’m sorry. You
must call back the original phone number.”

Five months later, Jane’s ear ached, but after 800 hours on the phone, she had
finally gotten a tentative promise that the insurance company would eventually
reprocess the claim. Elated as she was, she was anxious to get back to her pro-
gramming project. Could she remember what all those lines of code were sup-
posed to be doing?

No, she couldn’t. Jane stared and stared at her own work and, like a dream that
doesn’t make sense the next morning, the code was completely meaningless to
her. She had written a million lines of code, and not one line was accompanied by
an informative explanatory comment. She had left no clues to help her understand
what she’d been thinking, so in frustration, she abandoned the whole project.

60 PART 1 Getting Started with Java

Adding comments to your code
Listing 3-6 has an enhanced version of this chapter’s sample program. In addition
to all the keywords, identifiers, and punctuation, Listing 3-6 has text that’s meant
for human beings to read.

LISTING 3-6: Three Kinds of Comments

/*

 * Listing 3-6 in "Java For Dummies, 7th Edition"

 *

 * Copyright 2017 Wiley Publishing, Inc.

 * All rights reserved.

 */

/**

 * The Displayer class displays text

 * on the computer screen.

 *

 * @author Barry Burd

 * @version 1.0 1/24/17

 * @see java.lang.System

 */

public class Displayer {

 /**

 * The main method is where

 * execution of the code begins.

 *

 * @param args (See Chapter 11.)

 */

 public static void main(String args[]) {

 System.out.println("I love Java!"); //I? You?

 }

}

A comment is a special section of text, inside a program, whose purpose is to help
people understand the program. A comment is part of a good program’s
documentation.

CHAPTER 3 Using the Basic Building Blocks 61

The Java programming language has three kinds of comments:

 » Traditional comments: The first five lines of Listing 3-6 form one traditional
comment. The comment begins with /* and ends with */. Everything
between the opening /* and the closing */ is for human eyes only. No
information about "Java For Dummies, 7th Edition" or Wiley
Publishing, Inc. is translated by the compiler.

To read about compilers, see Chapter 2.

The second, third, fourth, and fifth lines in Listing 3-6 have extra asterisks (*).
I call them extra because these asterisks aren’t required when you create
a comment. They just make the comment look pretty. I include them in
Listing 3-6 because, for some reason that I don’t entirely understand, most
Java programmers add these extra asterisks.

 » End-of-line comments: The text //I? You? in Listing 3-6 is an end-of-line
comment. An end-of-line comment starts with two slashes and goes to the end
of a line of type. Once again, the compiler doesn’t translate the text inside the
end-of-line comment.

 » Javadoc comments: A javadoc comment begins with a slash and two
asterisks (/**). Listing 3-6 has two javadoc comments: one with the text The
Displayer class ... and another with the text The main method is
where

A javadoc comment, which is a special kind of traditional comment, is meant
to be read by people who never even look at the Java code. But that doesn’t
make sense. How can you see the javadoc comments in Listing 3-6 if you
never look at Listing 3-6?

 » Well, a certain program called javadoc (what else?) can find all the javadoc
comments in Listing 3-6 and turn these comments into a nice-looking web
page. Figure 3-8 shows the page.

Javadoc comments are great. Here are several great things about them:

 » The only person who has to look at a piece of Java code is the programmer
who writes the code. Other people who use the code can find out what the
code does by viewing the automatically generated web page.

 » Because other people don’t look at the Java code, other people don’t make
changes to the Java code. (In other words, other people don’t introduce errors
into the existing Java code.)

 » Because other people don’t look at the Java code, other people don’t have to
decipher the inner workings of the Java code. All these people need to know
about the code is what they read on the code’s web page.

62 PART 1 Getting Started with Java

 » The programmer doesn’t create two separate files — some Java code over
here and some documentation about the code over there. Instead, the
programmer creates one piece of Java code and embeds the documentation
(in the form of javadoc comments) right inside the code.

 » Best of all, the generation of web pages from javadoc comments is automatic.
So everyone’s documentation has the same format. No matter whose Java
code you use, you find out about that code by reading a page like the one in
Figure 3-8. That’s good because the format in Figure 3-8 is familiar to anyone
who uses Java.

You can generate your own web pages from the javadoc comments that you put in
your code. To discover how, visit this book’s website (www.allmycode.com/
JavaForDummies).

FIGURE 3-8:
The javadoc page

generated from
the code in
Listing 3-6.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 3 Using the Basic Building Blocks 63

What’s Barry’s excuse?
For years I’ve been telling my students to put comments in their code, and for
years I’ve been creating sample code (like the code in Listing 3-1) with no com-
ments in it. Why?

Three little words: Know your audience. When you write complicated, real-life code,
your audience is other programmers, information technology managers, and
 people who need help deciphering what you’ve done. When I write simple samples
of code for this book, my audience is you — the novice Java programmer. Instead
of reading my comments, your best strategy is to stare at my Java statements —
the statements that Java’s compiler deciphers. That’s why I put so few comments
in this book’s listings.

Besides, I’m a little lazy.

Using comments to experiment
with your code
You may hear programmers talk about commenting out certain parts of their code.
When you’re writing a program and something’s not working correctly, it often
helps to try removing some of the code. If nothing else, you find out what happens
when that suspicious code is removed. Of course, you may not like what happens
when the code is removed, so you don’t want to delete the code completely.
Instead, you turn your ordinary Java statements into comments. For instance, you
turn the statement

System.out.println("I love Java!");

into the comment

// System.out.println("I love Java!");

This change keeps the Java compiler from seeing the code while you try to figure
out what’s wrong with your program.

Traditional comments aren’t very useful for commenting out code. The big prob-
lem is that you can’t put one traditional comment inside of another. Suppose that
you want to comment out the following statements:

System.out.println("Parents,");

System.out.println("pick your");

/*

64 PART 1 Getting Started with Java

 * Intentionally displays on four separate lines

 */

System.out.println("battles");

System.out.println("carefully!");

If you try to turn this code into one traditional comment, you get the following
mess:

/*

 System.out.println("Parents,");

 System.out.println("pick your");

 /*

 * Intentionally displays on four separate lines

 */

 System.out.println("battles");

 System.out.println("carefully!");

*/

The first */ (after Intentionally displays) ends the traditional comment pre-
maturely. Then the battles and carefully statements aren’t commented out,
and the last */ chokes the compiler. You can’t nest traditional comments inside
one another. Because of this, I recommend end-of-line comments as tools for
experimenting with your code.

Most IDEs can comment out sections of your code for you automatically. For
details, visit this book’s website (www.allmycode.com/JavaForDummies).

http://www.allmycode.com/JavaForDummies

2Writing Your
Own Java
Programs

IN THIS PART . . .

Create new values and modify existing values.

Put decision-making into your application’s logic.

Repeat things as needed when your program runs.

CHAPTER 4 Making the Most of Variables and Their Values 67

IN THIS CHAPTER

 » Assigning values to things

 » Making things store certain types of
values

 » Applying operators to get new values

Making the Most of
Variables and Their
Values

T
he following conversation between Mr. Van Doren and Mr. Barasch never
took place:

Charles: A sea squirt eats its brain, turning itself from an animal into a plant.

Jack: Is that your final answer, Charles?

Charles: Yes, it is.

Jack: How much money do you have in your account today, Charles?

Charles: I have fifty dollars and twenty-two cents in my checking account.

Jack: Well, you better call the IRS, because your sea squirt answer is correct. You
just won a million dollars to add to your checking account. What do you think of
that, Charles?

Charles: I owe it all to honesty, diligence, and hard work, Jack.

Some aspects of this dialogue can be represented in Java by a few lines of code.

Chapter 4

68 PART 2 Writing Your Own Java Programs

Varying a Variable
No matter how you acquire your million dollars, you can use a variable to tally
your wealth. Listing 4-1 shows the code.

LISTING 4-1: Using a Variable

amountInAccount = 50.22;

amountInAccount = amountInAccount + 1000000.00;

You don’t have to type the code in Listing 4-1 (or in any of this book’s listings). To
download all the code in this book, visit the book’s website (www.allmycode.com/
JavaForDummies).

The code in Listing 4-1 makes use of the amountInAccount variable. A variable is
a placeholder. You can stick a number like 50.22 into a variable. After you place a
number in the variable, you can change your mind and put a different number into
the variable. (That’s what varies in a variable.) Of course, when you put a new
number in a variable, the old number is no longer there. If you didn’t save the old
number somewhere else, the old number is gone.

Figure 4-1 gives a before-and-after picture of the code in Listing 4-1. After the
first statement in Listing 4-1 is executed, the variable amountInAccount has
the number 50.22 in it. Then, after the second statement of Listing 4-1 is executed,
the amountInAccount variable suddenly has 1000050.22 in it. When you think
about a variable, picture a place in the computer’s memory where wires and tran-
sistors store 50.22, 1000050.22, or whatever. On the left side of Figure 4-1, imag-
ine that the box with 50.22 in it is surrounded by millions of other such boxes.

FIGURE 4-1:
A variable (before

and after).

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 4 Making the Most of Variables and Their Values 69

Now you need some terminology. The thing stored in a variable is a value. A vari-
able’s value can change during the run of a program (when Jack gives you a mil-
lion bucks, for instance). The value that’s stored in a variable isn’t necessarily a
number. (For instance, you can create a variable that always stores a letter.) The
kind of value that’s stored in a variable is a variable’s type.

You can read more about types in the section “The types of values that variables
may have,” later in this chapter.

A subtle, almost unnoticeable difference exists between a variable and a variable’s
name. Even in formal writing, I often use the word variable when I mean variable
name. Strictly speaking, amountInAccount is a variable name, and all the memory
storage associated with amountInAccount (including the type that amount
InAccount has and whatever value amountInAccount currently represents) is the
variable itself. If you think this distinction between variable and variable name is
too subtle for you to worry about, join the club.

Every variable name is an identifier — a name that you can make up in your own
code. In preparing Listing 4-1, I made up the name amountInAccount.

For more information on the kinds of names in a Java program, see Chapter 3.

Before the sun sets on Listing 4-1, you need to notice one more part of the listing.
The listing has 50.22 and 1000000.00 in it. Anybody in his or her right mind
would call these things numbers, but in a Java program it helps to call these things
literals.

And what’s so literal about 50.22 and 1000000.00? Well, think about the variable
amountInAccount in Listing 4-1. The variable amountInAccount stands for 50.22
some of the time, but it stands for 1000050.22 the rest of the time. You could use the
word number to talk about amountInAccount. But really, what amountInAccount
stands for depends on the fashion of the moment. On the other hand, 50.22 literally
stands for the value 50 22/100.

A variable’s value changes; a literal’s value doesn’t.

Starting with Java 7, you can add underscores to numeric literals. Instead of using
the plain old 1000000.00 in Listing 4-1, you can write amountInAccount =
amountInAccount + 1_000_000.00. Unfortunately, you can’t easily do what
you’re most tempted to do. You can’t write 1,000,000.00 (as you would in the
United States), nor can you write 1.000.000,00 (as you would in Germany). If you
want to display a number such as 1,000,000.00 in the program’s output, you
have to use some fancy formatting tricks. For more information about formatting,
check Chapters 10 and 11.

70 PART 2 Writing Your Own Java Programs

Assignment statements
Statements like the ones in Listing 4-1 are called assignment statements. In an
assignment statement, you assign a value to something. In many cases, this
something is a variable.

I recommend getting into the habit of reading assignment statements from right
to left. Figure 4-2 illustrates the action of the first line in Listing 4-1.

The second line in Listing 4-1 is just a bit more complicated. Figure 4-3 illustrates
the action of the second line in Listing 4-1.

In an assignment statement, the thing being assigned a value is always on the left
side of the equal sign.

FIGURE 4-2:
The action of the

first line in
Listing 4-1.

FIGURE 4-3:
The action of the

second line in
Listing 4-1.

CHAPTER 4 Making the Most of Variables and Their Values 71

The types of values that variables
may have
Have you seen the TV commercials that make you think you’re flying among the
circuits inside a computer? Pretty cool, eh? These commercials show 0s (zeros)
and 1s (ones) sailing by because 0s and 1s are the only things that computers can
deal with. When you think a computer is storing the letter J, the computer is really
storing 01001010. Everything inside the computer is a sequence of 0s and 1s. As
every computer geek knows, a 0 or 1 is called a bit.

As it turns out, the sequence 01001010, which stands for the letter J, can also stand
for the number 74. The same sequence can also stand for 1.0369608636003646 ×
10–43. In fact, if the bits are interpreted as screen pixels, the same sequence can be
used to represent the dots shown in Figure 4-4. The meaning of 01001010 depends
on the way the software interprets this sequence of 0s and 1s.

How do you tell the computer what 01001010 stands for? The answer is in the
concept of type. The type of a variable is the range of values that the variable is
permitted to store.

I copied the lines from Listing 4-1 and put them into a complete Java program.
The program is in Listing 4-2. When I run the program in Listing 4-2, I get the
output shown in Figure 4-5.

LISTING 4-2: A Program Uses amountInAccount

public class Millionaire {

 public static void main(String args[]) {

 double amountInAccount;

 amountInAccount = 50.22;

 amountInAccount = amountInAccount + 1000000.00;

FIGURE 4-4:
An extreme

close-up of eight
black and white

screen pixels.

(continued)

72 PART 2 Writing Your Own Java Programs

 System.out.print("You have $");

 System.out.print(amountInAccount);

 System.out.println(" in your account.");

 }

}

In Listing 4-2, look at the first line in the body of the main method:

double amountInAccount;

This line is called a variable declaration. Putting this line in your program is like
saying, “I’m declaring my intention to have a variable named amountInAccount in
my program.” This line reserves the name amountInAccount for your use in the
program.

In this variable declaration, the word double is a Java keyword. This word double
tells the computer what kinds of values you intend to store in amountInAccount.
In particular, the word double stands for numbers between –1.8 × 10308 and
1.8 × 10308. (These are enormous numbers with 308 zeros before the decimal point.
Only the world’s richest people write checks with 308 zeros in them. The second
of these numbers is one-point-eight gazazzo-zillion-kaskillion. The number 1.8
× 10308, a constant defined by the International Bureau of Weights and Measures,
is the number of eccentric computer programmers between Sunnyvale, California,
and the M31 Andromeda Galaxy.)

More important than the humongous range of the double keyword’s numbers is
the fact that a double value can have digits beyond the decimal point. After you
declare amountInAccount to be of type double, you can store all sorts of numbers
in amountInAccount. You can store 50.22, 0.02398479, or –3.0. In Listing 4-2, if
I hadn’t declared amountInAccount to be of type double, I may not have been able
to store 50.22. Instead, I would have had to store plain old 50, without any digits
beyond the decimal point.

Another type — type float — also allows you to have digits beyond the decimal
point. But float values aren’t as accurate as double values.

FIGURE 4-5:
Running the
program in
Listing 4-2.

LISTING 4-2: (continued)

CHAPTER 4 Making the Most of Variables and Their Values 73

DIGITS BEYOND THE DECIMAL POINT
Java has two different types that have digits beyond the decimal point: type double
and type float. So what’s the difference? When you declare a variable to be of type
double, you’re telling the computer to keep track of 64 bits when it stores the variable’s
values. When you declare a variable to be of type float, the computer keeps track of
only 32 bits.

You could change Listing 4-2 and declare amountInAccount to be of type float.

float amountInAccount;

Surely, 32 bits are enough to store a small number like 50.22, right? Well, they are and
they aren’t. You could easily store 50.00 with only 32 bits. Heck, you could store 50.00
with only 6 bits. The size of the number doesn’t matter. The accuracy matters. In a 64-bit
double variable, you’re using most of the bits to store stuff beyond the decimal point. To
store the .22 part of 50.22, you need more than the measly 32 bits that you get with
type float.

Do you really believe what you just read — that it takes more than 32 bits to store .22?
To help convince you, I made a few changes to the code in Listing 4-2. I made amount
InAccount be of type float. Then I changed the first three statements inside the main
method as follows:

float amountInAccount;

amountInAccount = 50.22F;

amountInAccount = amountInAccount + 1000000.00F;

(To understand why I used the letter F in 50.22F and 1000000.00F, see Table 4-1, later
in this chapter.) The output I got was

You have $1000050.25 in your account.

Compare this with the output in Figure 4-5. When I switch from type double to type
float, Charles has an extra three cents in his account. By changing to the 32-bit float
type, I’ve clobbered the accuracy in the amountInAccount variable’s hundredths place.
That’s bad.

Another difficulty with float values is purely cosmetic. Look again at the literals, 50.22
and 1000000.00, in Listing 4-2. The Laws of Java say that literals like these take up 64
bits each. So, if you declare amountInAccount to be of type float, you’ll run into
 trouble. You’ll have trouble stuffing those 64-bit literals into your little 32-bit

(continued)

74 PART 2 Writing Your Own Java Programs

In many situations, you have a choice. You can declare certain values to be either
float values or double values. But don’t sweat the choice between float and
double. For most programs, just use double. With today’s fancy processors, the
space you save using the float type is almost never worth the loss of accuracy.
(For more details, see the nearby sidebar, “Digits beyond the decimal point.”)

The big million-dollar jackpot in Listing 4-2 is impressive. But Listing 4-2 doesn’t
illustrate the best way to deal with dollar amounts. In a Java program, the best
way to represent currency is to shun the double and float types and opt instead
for a type named BigDecimal. For more information, see this book’s website (www.
allmycode.com/JavaForDummies).

Displaying text
The last three statements in Listing 4-2 use a neat formatting trick. You want to
display several different items on a single line on the screen. You put these items
in separate statements. All but the last of the statements are calls to System.out.
print. (The last statement is a call to System.out.println.) Calls to System.out.
print display text on part of a line and then leave the cursor at the end of the cur-
rent line. After executing System.out.print, the cursor is still at the end of the
same line, so the next System.out.whatever can continue printing on that same
line. With several calls to print capped off by a single call to println, the result is
just one nice-looking line of output. (Refer to Figure 4-5.)

A call to System.out.print writes some things and leaves the cursor sitting at the
end of the line of output. A call to System.out.println writes things and then
finishes the job by moving the cursor to the start of a brand-new line of output.

amountInAccount variable. To compensate, you can switch from double literals to
float literals by adding an F to each double literal, but a number with an extra F at the
end looks funny.

float amountInAccount;

amountInAccount = 50.22F;

amountInAccount = amountInAccount + 1000000.00F;

To experiment with numbers, visit http://babbage.cs.qc.cuny.edu/IEEE-754.
old/Decimal.html. The page takes any number you enter and shows you how the
number would be represented as 32 bits and as 64 bits.

(continued)

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html
http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

CHAPTER 4 Making the Most of Variables and Their Values 75

Run the code in Listing 4-2 to make sure that it runs correctly on your computer.
Then see what happens when you make the following changes:

 » Add thousands-separators to the number 1000000.00 in the code. For
example, if you live in the United States, where the thousands-separator is a
comma, change the number to 1,000,000.00 and see what happens. (Hint:
Nothing good happens.)

 » Try using underscores as thousands-separators in the code. That is, change
1000000.00 to 1_000_000.00 and see what happens.

 » Add a currency symbol to the number 50.22 in the code. For example, if you
live in the United States, where the currency symbol is $, see what happens
when you change the first assignment statement to amountInAccount =
$50.22.

 » Listing 4-2 has two System.out.print statements and one System.out.
println statement. Change all three to System.out.println statements
and then run the program.

 » The code in Listing 4-2 displays one line of text in its output. Using the
amountInAccount variable, add statements to the program so that it displays
a second line of text. Have the second line of text be "Now you have even
more! You have 2000000.00 in your account."

Numbers without decimal points
“In 1995, the average family had 2.3 children.”

At this point, a wise guy always remarks that no real family has exactly 2.3 chil-
dren. Clearly, whole numbers have a role in this world. Therefore, in Java, you can
declare a variable to store nothing but whole numbers. Listing 4-3 shows a pro-
gram that uses whole number variables.

LISTING 4-3: Using the int Type

public class ElevatorFitter {

 public static void main(String args[]) {

 int weightOfAPerson;

 int elevatorWeightLimit;

 int numberOfPeople;

(continued)

76 PART 2 Writing Your Own Java Programs

 weightOfAPerson = 150;

 elevatorWeightLimit = 1400;

 numberOfPeople = elevatorWeightLimit / weightOfAPerson;

 System.out.print("You can fit ");

 System.out.print(numberOfPeople);

 System.out.println(" people on the elevator.");

 }

}

The story behind the program in Listing 4-3 takes some heavy-duty explaining.
Here goes:

You have a hotel elevator whose weight capacity is 1,400 pounds. One weekend
the hotel hosts the Brickenchicker family reunion. A certain branch of the
 Brickenchicker family has been blessed with identical dectuplets (ten siblings, all
with the same physical characteristics). Normally, each of the Brickenchicker
 dectuplets weighs exactly 145 pounds. But on Saturday the family has a big
catered lunch, and, because lunch included strawberry shortcake, each of the
Brickenchicker dectuplets now weighs 150 pounds. Immediately after lunch, all
ten of the Brickenchicker dectuplets arrive at the elevator at exactly the same
time. (Why not? All ten of them think alike.) So, the question is, how many of the
dectuplets can fit on the elevator?

Now remember, if you put one ounce more than 1,400 pounds of weight on the
elevator, the elevator cable breaks, plunging all dectuplets on the elevator to their
sudden (and costly) deaths.

The answer to the Brickenchicker riddle (the output of the program of Listing 4-3)
is shown in Figure 4-6.

At the core of the Brickenchicker elevator problem, you have whole numbers —
numbers with no digits beyond the decimal point. When you divide 1,400 by 150,
you get 91⁄3, but you shouldn’t take the 1⁄3 seriously. No matter how hard you try,

FIGURE 4-6:
Save the

Brickenchickers.

LISTING 4-3: (continued)

CHAPTER 4 Making the Most of Variables and Their Values 77

you can’t squeeze an extra 50 pounds’ worth of Brickenchicker dectuplet onto the
elevator. This fact is reflected nicely in Java. In Listing 4-3, all three variables
(weightOfAPerson, elevatorWeightLimit, and numberOfPeople) are of type int.
An int value is a whole number. When you divide one int value by another (as you
do with the slash in Listing 4-3), you get another int. When you divide 1,400 by
150, you get 9 — not 91⁄3. You see this in Figure 4-6. Taken together, the following
statements display 9 onscreen:

numberOfPeople = elevatorWeightLimit / weightOfAPerson;

System.out.print(numberOfPeople);

My wife and I were married on February 29, so we have one anniversary every four
years. Write a program with a variable named years. Based on the value of the
years variable, the program displays the number of anniversaries we’ve had. For
example, if the value of years is 4, the program displays the sentence Number of
anniversaries: 1. If the value of years is 7, the program still displays Number
of anniversaries: 1. But if the value of years is 8, the program displays Number
of anniversaries: 2.

Combining declarations and
initializing variables
Look back at Listing 4-3. In that listing, you see three variable declarations — one
for each of the program’s three int variables. I could have done the same thing
with just one declaration:

int weightOfAPerson, elevatorWeightLimit, numberOfPeople;

FOUR WAYS TO STORE WHOLE NUMBERS
Java has four types of whole numbers. The types are byte, short, int, and long.
Unlike the complicated story about the accuracy of types float and double, the only
thing that matters when you choose among the whole number types is the size of the
number you’re trying to store. If you want to use numbers larger than 127, don’t use
byte. To store numbers larger than 32767, don’t use short.

Most of the time, you’ll use int. But if you need to store numbers larger than
2147483647, forsake int in favor of long. (A long number can be as big as
9223372036854775807.) For the whole story, see Table 4-1, a little later in this chapter.

78 PART 2 Writing Your Own Java Programs

If two variables have completely different types, you can’t create both variables in
the same declaration. For instance, to create an int variable named weightOfFred
and a double variable named amountInFredsAccount, you need two separate vari-
able declarations.

You can give variables their starting values in a declaration. In Listing 4-3, for
instance, one declaration can replace several lines in the main method (all but the
calls to print and println):

int weightOfAPerson = 150, elevatorWeightLimit = 1400,

 numberOfPeople = elevatorWeightLimit/weightOfAPerson;

When you do this, you don’t say that you’re assigning values to variables. The
pieces of the declarations with equal signs in them aren’t really called assignment
statements. Instead, you say that you’re initializing the variables. Believe it or not,
keeping this distinction in mind is helpful.

Like everything else in life, initializing a variable has advantages and
disadvantages:

 » When you combine six lines of Listing 4-3 into just one declaration, the
code becomes more concise. Sometimes concise code is easier to read.
Sometimes it’s not. As a programmer, it’s your judgment call.

 » By initializing a variable, you might automatically avoid certain pro-
gramming errors. For an example, see Chapter 7.

 » In some situations, you have no choice. The nature of your code forces
you either to initialize or not to initialize. For an example that doesn’t lend
itself to variable initialization, see the deleting-evidence program in Chapter 6.

Experimenting with JShell
The programs in Listings 4-2 and 4-3 both begin with the same old, tiresome
refrain:

public class SomethingOrOther {

 public static void main(String args[]) {

CHAPTER 4 Making the Most of Variables and Their Values 79

A Java program requires this verbose introduction because

 » In Java the entire program is a class.

 » The main method is called into action automatically when the program begins
running.

I explain all of this in Chapter 3.

Anyway, retyping this boilerplate code into an editor window can be annoying,
especially when your goal is to test the effect of executing a few simple state-
ments. To fix this problem, the stewards of Java came up with a new tool in Java
9. They call it JShell.

Instructions for launching JShell differ from one computer to the next. For instruc-
tions that work on your computer, visit this book’s website (www.allmycode.com/
JavaForDummies).

When you use JShell, you hardly ever type an entire program. Instead, you type a
Java statement, and then JShell responds to your statement, and then you type a
second statement, and then JShell responds to your second statement, and then
you type a third statement, and so on. A single statement is enough to get a
response from JShell.

JShell is only one example of a language’s Read Evaluate Print Loop (REPL). Many
programming languages have REPLs and, with Java 9, the Java language finally
has a REPL of its own.

In Figure 4-7, I use JShell to find out how Java responds to the assignment state-
ments in Listings 4-2 and 4-3.

When you run JShell, the dialogue goes something like this:

jshell> You type a statement

JShell responds

jshell> You type another statement

JShell responds

For example, in Figure 4-7, I type double amountInAccount and then press Enter.
JShell responds by displaying

amountInAccount ==> 0.0

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

80 PART 2 Writing Your Own Java Programs

Here are a few things to notice about JShell:

 » You don’t have to type an entire Java program.

Typing a few statements such as

double amountInAccount

amountInAccount = 50.22

amountInAccount = amountInAccount + 1000000.00

does the trick. It’s like running the code snippet in Listing 4-1 (except that
Listing 4-1 doesn’t declare amountInAccount to be a double).

 » In JShell, semicolons are (to a large extent) optional.

In Figure 4-7, I type a semicolon at the end of only one of my nine lines.

For some advice about using semicolons in JShell, see Chapter 5.

 » JShell responds immediately after you type each line.

After I declare amountInAccount to be double, JShell responds by telling
me that the amountInAccount variable has the value 0.0. After I type
amountInAccount = amountInAccount + 1000000.00, JShell tells me that
the new value of amountInAccount is 1000050.22.

FIGURE 4-7:
An intimate

conversation
between me

and JShell.

CHAPTER 4 Making the Most of Variables and Their Values 81

 » You can mix statements from many different Java programs.

In Figure 4-7, I mix statements from the programs in Listings 4-2 and 4-3.
JShell doesn’t care.

 » You can ask JShell for the value of an expression.

You don’t have to assign the expression’s value to a variable. For example, in
Figure 4-7, I type

elevatorWeightLimit / weightOfAPerson

JShell responds by telling me that the value of elevatorWeightLimit /
weightOfAPerson is 9. JShell makes up a temporary name for that value. In
Figure 4-7, the name happens to be $8. So, on the next line in Figure 4-7, I ask
for the value of $8 +1, and JShell gives me the answer 10.

 » You can even get answers from JShell without using variables.

On the last line in Figure 4-7, I ask for the value of 42 + 7, and JShell generously
answers with the value 49.

While you’re running JShell, you don’t have to retype commands that you’ve
already typed. If you press the up-arrow key once, JShell shows you the command
that you typed most recently. If you press the up-arrow key twice, JShell shows
you the next-to-last command that you typed. And so on. When JShell shows you
a command, you can use your left- and right-arrow keys to move to any character
in the middle of the command. You can modify characters in the command.
Finally, when you press Enter, JShell executes your newly modified command.

To end your run of JShell, you type /exit (starting with a slash). But /exit is only
one of many commands you can give to JShell. To ask JShell what other kinds of
commands you can use, type /help.

With JShell, you can test your statements before you put them into a full-blown
Java program. That makes JShell a truly useful tool.

Visit this book’s website (www.allmycode.com/JavaForDummies) for instruc-
tions on launching JShell on your computer. After launching JShell, type a few
lines of code from Figure 4-7. See what happens when you type some slightly
different lines.

http://www.allmycode.com/JavaForDummies

82 PART 2 Writing Your Own Java Programs

What Happened to All the
Cool Visual Effects?

The programs in Listings 4-2 and 4-3 are text-based. A text-based program has
no windows, no dialog boxes — nothing of that kind. All you see is line after line
of plain, unformatted text. The user types something, and the computer displays
a response beneath each line of input.

The opposite of a text-based program is a graphical user interface (GUI) program.
A GUI program has windows, text fields, buttons, and other visual goodies.

As visually unexciting as text-based programs are, they contain the basic concepts
for all computer programming. Also, text-based programs are easier for the
 novice programmer to read, write, and understand than the corresponding GUI
programs. So, in this book I take a three-pronged approach:

 » Text-based examples: I introduce most of the new concepts with
these examples.

 » The DummiesFrame class: Alongside the text-based examples, I present GUI
versions using the DummiesFrame class, which I created especially for this
book. (I introduce the DummiesFrame class in Chapter 7.)

 » GUI programming techniques: I describe some of the well-known tech-
niques in Chapters 9, 10, 14, and 16. I even have a tiny GUI example in this
chapter. (See the later section "The Molecules and Compounds: Reference
Types.")

With this careful balance of drab programs and sparkly programs, you’re sure to
learn Java.

The Atoms: Java’s Primitive Types
The words int and double that I describe in the previous sections are examples of
primitive types (also known as simple types) in Java. The Java language has exactly
eight primitive types. As a newcomer to Java, you can pretty much ignore all but
four of these types. (As programming languages go, Java is nice and compact that
way.) Table 4-1 shows the complete list of primitive types.

CHAPTER 4 Making the Most of Variables and Their Values 83

The types that you shouldn’t ignore are int, double, char, and boolean. Previous
sections in this chapter cover the int and double types. So the next two sections
cover char and boolean types.

The char type
Several decades ago, people thought computers existed only for doing big
 number-crunching calculations. Nowadays, nobody thinks that way. So, if you
haven’t been in a cryogenic freezing chamber for the past 20 years, you know that
computers store letters, punctuation symbols, and other characters.

The Java type that’s used to store characters is called char. Listing 4-4 has a sim-
ple program that uses the char type. Figure 4-8 shows the output of the program
in Listing 4-4.

TABLE 4-1: Java’s Primitive Types
Type Name What a Literal Looks Like Range of Values

Whole number types

byte (byte)42 –128 to 127

short (short)42 –32768 to 32767

int 42 –2147483648 to 2147483647

long 42L –9223372036854775808 to
9223372036854775807

Decimal number types

float 42.0F –3.4 × 1038 to 3.4 × 1038

double 42.0 –1.8 × 10308 to 1.8 × 10308

Character type

char 'A' Thousands of characters, glyphs,
and symbols

Logical type

boolean true true, false

84 PART 2 Writing Your Own Java Programs

LISTING 4-4: Using the char Type

public class CharDemo {

 public static void main(String args[]) {

 char myLittleChar = 'b';

 char myBigChar = Character.toUpperCase(myLittleChar);

 System.out.println(myBigChar);

 }

}

In Listing 4-4, the first initialization stores the letter b in the variable
myLittleChar. In the initialization, notice how b is surrounded by single quote
marks. In Java, every char literal starts and ends with a single quote mark.

In a Java program, single quote marks surround the letter in a char literal.

If you need help sorting out the terms assignment, declaration, and initialization, see
the “Combining declarations and initializing variables” section, earlier in this
chapter.

In the second initialization of Listing 4-4, the program calls an API method whose
name is Character.toUpperCase. The Character.toUpperCase method does just
what its name suggests — the method produces the uppercase equivalent of the
letter b. This uppercase equivalent (the letter B) is assigned to the myBigChar vari-
able, and the B that’s in myBigChar prints onscreen.

For an introduction to the Java application programming interface (API), see
Chapter 3.

If you’re tempted to write the following statement,

char myLittleChars = 'barry'; //Don't do this

FIGURE 4-8:
An exciting run
of the program
of Listing 4-4 as

it appears in
the Eclipse

Console view.

CHAPTER 4 Making the Most of Variables and Their Values 85

please resist the temptation. You can’t store more than one letter at a time in a
char variable, and you can’t put more than one letter between a pair of single
quotes. If you’re trying to store words or sentences (not just single letters), you
need to use something called a String.

For a look at Java’s String type, see the section “The Molecules and Compounds:
Reference Types,” later in this chapter.

If you’re used to writing programs in other languages, you may be aware of some-
thing called ASCII character encoding. Most languages use ASCII; Java uses Uni-
code. In the old ASCII representation, each character takes up only 8 bits, but in
Unicode, each character takes up 8, 16, or 32 bits. Whereas ASCII stores the letters
of the Roman (English) alphabet, Unicode has room for characters from most of
the world’s commonly spoken languages. The only problem is that some of the
Java API methods are geared specially toward 16-bit Unicode. Occasionally, this
bites you in the back (or it bytes you in the back, as the case may be). If you’re
using a method to write Hello on the screen and H e l l o shows up instead,
check the method’s documentation for mention of Unicode characters.

It’s worth noticing that the two methods, Character.toUpperCase and System.
out.println, are used quite differently in Listing 4-4. The method Character.
toUpperCase is called as part of an initialization or an assignment statement, but
the method System.out.println is called on its own. To find out more about this
topic, see the explanation of return values in Chapter 7.

The boolean type
A variable of type boolean stores one of two values: true or false. Listing 4-5
demonstrates the use of a boolean variable. Figure 4-9 shows the output of the
program in Listing 4-5.

LISTING 4-5: Using the boolean Type

public class ElevatorFitter2 {

 public static void main(String args[]) {

 System.out.println("True or False?");

 System.out.println("You can fit all ten of the");

 System.out.println("Brickenchicker dectuplets");

 System.out.println("on the elevator:");

 System.out.println();

 int weightOfAPerson = 150;

(continued)

86 PART 2 Writing Your Own Java Programs

 int elevatorWeightLimit = 1400;

 int numberOfPeople = elevatorWeightLimit / weightOfAPerson;

 boolean allTenOkay = numberOfPeople >= 10;

 System.out.println(allTenOkay);

 }

}

In Listing 4-5, the allTenOkay variable is of type boolean. To find a value for the
allTenOkay variable, the program checks to see whether numberOfPeople is
greater than or equal to ten. (The symbols >= stand for greater than or equal to.)

At this point, it pays to be fussy about terminology. Any part of a Java program
that has a value is an expression. If you write

weightOfAPerson = 150;

then 150 is an expression (an expression whose value is the quantity 150). If you
write

numberOfEggs = 2 + 2;

then 2 + 2 is an expression (because 2 + 2 has the value 4). If you write

int numberOfPeople = elevatorWeightLimit / weightOfAPerson;

then elevatorWeightLimit / weightOfAPerson is an expression. (The value of
the expression elevatorWeightLimit / weightOfAPerson depends on whatever
values the variables elevatorWeightLimit and weightOfAPerson have when the
code containing the expression is executed.)

Any part of a Java program that has a value is an expression.

FIGURE 4-9:
The Brickenchicker

dectuplets strike
again.

LISTING 4-5: (continued)

CHAPTER 4 Making the Most of Variables and Their Values 87

In Listing 4-5, the code numberOfPeople >= 10 is an expression. The expression’s
value depends on the value stored in the numberOfPeople variable. But, as you
know from seeing the strawberry shortcake at the Brickenchicker family’s catered
lunch, the value of numberOfPeople isn’t greater than or equal to ten. As a result,
the value of numberOfPeople >= 10 is false. So, in the statement in Listing 4-5,
in which allTenOkay is assigned a value, the allTenOkay variable is assigned a
false value.

In Listing 4-5, I call System.out.println() with nothing inside the parentheses.
When I do this, Java adds a line break to the program’s output. In Listing 4-5,
System.out.println() tells the program to display a blank line.

The Molecules and Compounds:
Reference Types

By combining simple things, you get more complicated things. That’s the way
things always go. Take some of Java’s primitive types, whip them together to
make a primitive type stew, and what do you get? A more complicated type called
a reference type.

The program in Listing 4-6 uses reference types. Figure 4-10 shows you what
happens when you run the program in Listing 4-6.

LISTING 4-6: Using Reference Types

import javax.swing.JFrame;

public class ShowAFrame {

 public static void main(String args[]) {

 JFrame myFrame = new JFrame();

 String myTitle = "Blank Frame";

 myFrame.setTitle(myTitle);

 myFrame.setSize(300, 200);

 myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myFrame.setVisible(true);

 }

}

88 PART 2 Writing Your Own Java Programs

The program in Listing 4-6 uses two references types. Both types are defined
in the Java API. One of the types (the one that you’ll use all the time) is called
String. The other type (the one that you can use to create GUIs) is called JFrame.

A String is a bunch of characters. It’s like having several char values in a row. So,
with the myTitle variable declared to be of type String, assigning "Blank Frame"
to the myTitle variable makes sense in Listing 4-6. The String class is declared
in the Java API.

In a Java program, double quote marks surround the letters in a String literal.

A Java JFrame is a lot like a window. (The only difference is that you call it a JFrame
instead of a window.) To keep Listing 4-6 short and sweet, I decided not to put
anything in my frame — no buttons, no fields, nothing.

Even with a completely empty frame, Listing 4-6 uses tricks that I don’t describe
until later in this book. So don’t try reading and interpreting every word of
 Listing 4-6. The big thing to get from Listing 4-6 is that the program has two
variable declarations. In writing the program, I made up two variable names:
myTitle and myFrame. According to the declarations, myTitle is of type String,
and myFrame is of type JFrame.

You can look up String and JFrame in Java’s API documentation. But, even before
you do, I can tell you what you’ll find. You’ll find that String and JFrame are the
names of Java classes. So that’s the big news. Every class is the name of a refer-
ence type. You can reserve amountInAccount for double values by writing

double amountInAccount;

or by writing

double amountInAccount = 50.22;

FIGURE 4-10:
An empty frame.

CHAPTER 4 Making the Most of Variables and Their Values 89

You can also reserve myFrame for a JFrame value by writing

JFrame myFrame;

or by writing

JFrame myFrame = new JFrame();

To review the notion of a Java class, see the sections on object-oriented program-
ming (OOP) in Chapter 1.

Every Java class is a reference type. If you declare a variable to have some type
that’s not a primitive type, the variable’s type is (most of the time) the name of a
Java class.

Now, when you declare a variable to have type int, you can visualize what that
declaration means in a fairly straightforward way. It means that, somewhere
inside the computer’s memory, a storage location is reserved for that variable’s
value. In the storage location is a bunch of bits. The arrangement of the bits
ensures that a certain whole number is represented.

That explanation is fine for primitive types like int or double, but what does it
mean when you declare a variable to have a reference type? What does it mean to
declare variable myFrame to be of type JFrame?

Well, what does it mean to declare i thank You God to be an E. E. Cummings poem?
What would it mean to write the following declaration?

EECummingsPoem ithankYouGod;

It means that a class of things is EECummingsPoem, and ithankYouGod refers to an
instance of that class. In other words, ithankYouGod is an object belonging to the
EECummingsPoem class.

Because JFrame is a class, you can create objects from that class. (If you don’t
believe me, read some of my paragraphs about classes and objects in Chapter 1.)
Each object (each instance of the JFrame class) is an actual frame — a window
that appears on the screen when you run the code in Listing 4-6. By declaring the
variable myFrame to be of type JFrame, you’re reserving the use of the name
myFrame. This reservation tells the computer that myFrame can refer to an actual
JFrame-type object. In other words, myFrame can become a nickname for one of
the windows that appears on the computer screen. Figure 4-11 illustrates the
situation.

90 PART 2 Writing Your Own Java Programs

When you declare ClassName variableName;, you’re saying that a certain vari-
able can refer to an instance of a particular class.

In Listing 4-6, the phrase JFrame myFrame reserves the use of the name myFrame.
On that same line of code, the phrase new JFrame() creates a new object (an
instance of the JFrame class). Finally, that line’s equal sign makes myFrame refer
to the new object. Knowing that the two words new JFrame() create an object can
be very important. For a more thorough explanation of objects, see Chapter 7.

Try these things:

 » Run the code in Listing 4-6 on your computer.

 » Before running the code in Listing 4-6, comment out the myFrame.set
Visible(true) statement by putting two forward slashes (//) immediately
to the left of the statement. Does anything happen when you run the
modified code?

 » Experiment with the code in Listing 4-6 by changing the order of the state-
ments inside the body of the main method. What rearrangements of these
statements are okay, and which aren’t?

FIGURE 4-11:
The variable

myFrame
refers to an

instance of the
JFrame class.

CHAPTER 4 Making the Most of Variables and Their Values 91

An Import Declaration
It’s always good to announce your intentions up front. Consider the following
classroom lecture:

Today, in our History of Film course, we’ll be discussing the career of actor Lionel
Herbert Blythe Barrymore.

Born in Philadelphia, Barrymore appeared in more than 200 films, including It’s a
Wonderful Life, Key Largo, and Dr. Kildare’s Wedding Day. In addition, Barrymore
was a writer, composer, and director. Barrymore did the voice of Ebenezer Scrooge
every year on radio

PRIMITIVE TYPE STEW
While I’m on the subject of frames, what’s a frame, anyway? A frame is a window that
has a certain height and width and a certain location on your computer’s screen.
Therefore, deep inside the declaration of the Frame class, you can find variable declara-
tions that look something like this:

int width;

int height;

int x;

int y;

Here’s another example — Time. An instance of the Time class may have an hour
(a number from 1 to 12), a number of minutes (from 0 to 59), and a letter (a for a.m.;
p for p.m.).

int hour;

int minutes;

char amOrPm;

Notice that this high-and-mighty thing called a Java API class is neither high nor mighty.
A class is just a collection of declarations. Some of those declarations are the declara-
tions of variables. Some of those variable declarations use primitive types, and other
variable declarations use reference types. These reference types, however, come from
other classes, and the declarations of those classes have variables. The chain goes on
and on. Ultimately, everything comes, in one way or another, from the primitive types.

92 PART 2 Writing Your Own Java Programs

Interesting stuff, heh? Now compare these paragraphs with a lecture in which the
instructor doesn’t begin by introducing the subject:

Welcome once again to the History of Film.

Born in Philadelphia, Lionel Barrymore appeared in more than 200 films, including It’s
a Wonderful Life, Key Largo, and Dr. Kildare’s Wedding Day. In addition, Barrymore
(not Ethel, John, or Drew) was a writer, composer, and director. Lionel Barrymore did
the voice of Ebenezer Scrooge every year on radio

Without a proper introduction, a speaker may have to remind you constantly that
the discussion is about Lionel Barrymore and not about any other Barrymore. The
same is true in a Java program. Look again at Listing 4-6:

import javax.swing.JFrame;

public class ShowAFrame {

 public static void main(String args[]) {

 JFrame myFrame = new JFrame();

In Listing 4-6, you announce in the introduction (in the import declaration) that
you’re using JFrame in your Java class. You clarify what you mean by JFrame with
the full name javax.swing.JFrame. (Hey! Didn’t the first lecturer clarify with the
full name “Lionel Herbert Blythe Barrymore”?) After announcing your intentions
in the import declaration, you can use the abbreviated name JFrame in your Java
class code.

If you don’t use an import declaration, you have to repeat the full javax.swing.
JFrame name wherever you use the name JFrame in your code. For example, with-
out an import declaration, the code of Listing 4-6 would look like this:

public class ShowAFrame {

 public static void main(String args[]) {

 javax.swing.JFrame myFrame = new javax.swing.JFrame();

 String myTitle = "Blank Frame";

 myFrame.setTitle(myTitle);

 myFrame.setSize(3200, 200);

 myFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);

 myFrame.setVisible(true);

 }

}

CHAPTER 4 Making the Most of Variables and Their Values 93

The details of this import stuff can be pretty nasty. But fortunately, many IDEs
have convenient helper features for import declarations. For details, see this
book’s website (www.allmycode.com/JavaForDummies).

No single section in this book can present the entire story about import declara-
tions. To begin untangling some of the import declaration’s subtleties, see Chap-
ters 5, 9, and 10.

Creating New Values by
Applying Operators

What could be more comforting than your old friend the plus sign? It was the first
topic you learned about in elementary school math. Almost everybody knows how
to add 2 and 2. In fact, in English usage, adding 2 and 2 is a metaphor for some-
thing that’s easy to do. Whenever you see a plus sign, a cell in your brain says,
“Thank goodness — it could be something much more complicated.”

Java has a plus sign. You can use it for several purposes. You can use the plus sign
to add two numbers, like this:

int apples, oranges, fruit;

apples = 5;

oranges = 16;

fruit = apples + oranges;

You can also use the plus sign to paste String values together:

String startOfChapter =

 "It's three in the morning. I'm dreaming about the"+
 "history course that I failed in high school.";

System.out.println(startOfChapter);

This can be handy because in Java, you’re not allowed to make a String straddle
from one line to another. In other words, the following code wouldn’t work:

String thisIsBadCode =

 "It's three in the morning. I'm dreaming about the

 history course that I failed in high school.";

System.out.println(thisIsBadCode);

http://www.allmycode.com/JavaForDummies

94 PART 2 Writing Your Own Java Programs

The correct way to say that you’re pasting String values together is to say that
you’re concatenating String values.

You can even use the plus sign to paste numbers next to String values:

int apples, oranges, fruit;

apples = 5;

oranges = 16;

fruit = apples + oranges;
System.out.println("You have" + fruit + "pieces of fruit.");

Of course, the old minus sign is available, too (but not for String values):

apples = fruit - oranges;

Use an asterisk (*) for multiplication and a slash (/) for division:

double rate, pay;

int hours;

rate = 6.25;

hours = 35;

pay = rate * hours;

System.out.println(pay);

For an example using division, refer to Listing 4-3.

When you divide an int value by another int value, you get an int value. The
computer doesn’t round. Instead, the computer chops off any remainder. If you
put System.out.println(11 / 4) in your program, the computer prints 2, not
2.75. To get past this, make either (or both) of the numbers you’re dividing
double values. If you put System.out.println(11.0 / 4) in your program, the
computer prints 2.75.

Another useful arithmetic operator is called the remainder operator. The symbol
for the remainder operator is the percent sign (%). When you put System.out.
println(11 % 4) in your program, the computer prints 3. It does this because 4
goes into 11 who-cares-how-many times with a remainder of 3. The remainder
operator turns out to be fairly useful. Listing 4-7 has an example.

CHAPTER 4 Making the Most of Variables and Their Values 95

LISTING 4-7: Making Change

import static java.lang.System.out;

public class MakeChange {

 public static void main(String args[]) {

 int total = 248;

 int quarters = total / 25;

 int whatsLeft = total % 25;

 int dimes = whatsLeft / 10;

 whatsLeft = whatsLeft % 10;

 int nickels = whatsLeft / 5;

 whatsLeft = whatsLeft % 5;

 int cents = whatsLeft;

 out.println("From " + total + " cents you get");
 out.println(quarters + " quarters");
 out.println(dimes + " dimes");
 out.println(nickels + " nickels");
 out.println(cents + " cents");
 }

}

Figure 4-12 shows a run of the code in Listing 4-7. You start with a total of 248
cents. Then

quarters = total / 25

divides 248 by 25, giving 9. That means you can make 9 quarters from 248 cents.
Next,

whatsLeft = total % 25

divides 248 by 25 again and puts only the remainder, 23, into whatsLeft. Now
you’re ready for the next step, which is to take as many dimes as you can out
of cents.

FIGURE 4-12:
Change for $2.48.

96 PART 2 Writing Your Own Java Programs

The code in Listing 4-7 makes change in U.S. currency with the following coin
denominations: 1 cent, 5 cents (one nickel), 10 cents (one dime), and 25 cents (one
quarter). With these denominations, the MakeChange class gives you more than
simply a set of coins adding up to 248 cents. The MakeChange class gives you the
smallest number of coins that add up to 248 cents. With some minor tweaking, you can
make the code work in any country’s coinage. You can always get a set of coins add-
ing up to a total. But, for the denominations of coins in some countries, you won’t
always get the smallest number of coins that add up to a total. In fact, I’m looking for
examples. If your country’s coinage prevents MakeChange from always giving the
best answer, please, send me an email (JavaForDummies@allmycode.com).

IMPORT DECLARATIONS: THE UGLY TRUTH
Notice the import declaration at the top of Listing 4-7:

import static java.lang.System.out;

Compare this with the import declaration at the top of Listing 4-6:

import javax.swing.JFrame;

By adding the import static java.lang.System.out; line to Listing 4-7, I can
make the rest of the code a bit easier to read, and I can avoid having long Java state-
ments that start on one line and continue on another. But you never have to do that. If
you remove the import static java.lang.System.out; line and pepper the code
liberally with System.out.println, the code works just fine.

Here’s a question: Why does one declaration include the word static and the other dec-
laration doesn’t? Well, to be honest, I wish I hadn’t asked!

For the real story about static, you have to read part of Chapter 10. And frankly, I don’t
recommend skipping ahead to that chapter’s static section if you take medicine for a
heart condition, if you’re pregnant or nursing, or if you have no previous experience
with object-oriented programming. For now, rest assured that Chapter 10 is easy to
read after you’ve made the journey through Part 3 of this book. And when you have to
decide whether to use the word static in an import declaration, remember these hints:

• The vast majority of import declarations in Java program do not use the word static.

• In this book, I never use import static to import anything except System.out. (Well,
almost never)

• Most import declarations don’t use the word static because most declarations
import classes. Unfortunately, System.out is not the name of a class.

http://JavaForDummies@allmycode.com

CHAPTER 4 Making the Most of Variables and Their Values 97

Find the values of the following expressions by typing each expression in JShell (if
you have trouble launching JShell, create a Java program that displays the value of
each of these expressions):

 » 5 / 4

 » 5 / 4.0

 » 5.0 / 4

 » 5.0 / 4.0

 » "5" + "4"

 » 5 + 4

 » " " + 5 + 4

Initialize once, assign often
Listing 4-7 has three lines that put values into the variable whatsLeft:

int whatsLeft = total % 25;

whatsLeft = whatsLeft % 10;

whatsLeft = whatsLeft % 5;

Only one of these lines is a declaration. The other two lines are assignment state-
ments. That’s good because you can’t declare the same variable more than once
(not without creating something called a block). If you goof and write

int whatsLeft = total % 25;

int whatsLeft = whatsLeft % 10;

in Listing 4-7, you see an error message (such as Duplicate variable whats
Left or Variable 'whatsLeft' is already defined) when you try to compile
your code.

To find out what a block is, see Chapter 5. Then, for some honest talk about rede-
claring variables, see Chapter 10.

98 PART 2 Writing Your Own Java Programs

The increment and decrement operators
Java has some neat little operators that make life easier (for the computer’s pro-
cessor, for your brain, and for your fingers). Altogether, four such operators
exist — two increment operators and two decrement operators. The increment
operators add 1, and the decrement operators subtract 1. The increment operators
use double plus signs (++), and the decrement operators use double minus
signs (--). To see how they work, you need some examples. The first example is
shown in Figure 4-13.

Figure 4-14 shows a run of the program in Figure 4-13. In this horribly uneventful
run, the count of bunnies prints three times.

The double plus signs go by two names, depending on where you put them. When
you put the ++ before a variable, the ++ is called the preincrement operator. (The pre
stands for before.)

The word before has two meanings:

 » You put ++ before the variable.

 » The computer adds 1 to the variable’s value before the variable is used in any
other part of the statement.

FIGURE 4-14:
A run of the code

in Figure 4-13.

FIGURE 4-13:
Using

preincrement.

CHAPTER 4 Making the Most of Variables and Their Values 99

To understand this, look at the bold line in Figure 4-13. The computer adds 1 to
numberOfBunnies (raising the value of numberOfBunnies to 29) and then prints
29 onscreen.

With out.println(++numberOfBunnies), the computer adds 1 to numberOf
Bunnies before printing the new value of numberOfBunnies onscreen.

An alternative to preincrement is postincrement. (The post stands for after.) The
word after has two different meanings:

 » You put ++ after the variable.

 » The computer adds 1 to the variable’s value after the variable is used in any
other part of the statement.

To see more clearly how postincrement works, look at the bold line in Figure 4-15.
The computer prints the old value of numberOfBunnies (which is 28) on the screen,
and then the computer adds 1 to numberOfBunnies, which raises the value of
 numberOfBunnies to 29.

With out.println(numberOfBunnies++), the computer adds 1 to numberOfBunnies
after printing the old value that numberOfBunnies already had.

Figure 4-16 shows a run of the code in Figure 4-15. Compare Figure 4-16 with the
run in Figure 4-14:

 » With preincrement in Figure 4-14, the second number is 29.

 » With postincrement in Figure 4-16, the second number is 28.

In Figure 4-16, 29 doesn’t show onscreen until the end of the run, when the
computer executes one last out.println(numberOfBunnies).

FIGURE 4-15:
Using

 postincrement.

100 PART 2 Writing Your Own Java Programs

Are you trying to decide between using preincrement or postincrement? Try no
longer. Most programmers use postincrement. In a typical Java program, you
often see things like numberOfBunnies++. You seldom see things like
++numberOfBunnies.

In addition to preincrement and postincrement, Java has two operators that
use --. These operators are called predecrement and postdecrement:

 » With predecrement (--numberOfBunnies), the computer subtracts 1 from the
variable’s value before the variable is used in the rest of the statement.

 » With postdecrement (numberOfBunnies--), the computer subtracts 1 from
the variable’s value after the variable is used in the rest of the statement.

Instead of writing ++numberOfBunnies, you could achieve the same effect by
writing numberOfBunnies = numberOfBunnies + 1. So some people conclude
that Java’s ++ and -- operators are for saving keystrokes — to keep those poor
fingers from overworking themselves. This is entirely incorrect. The best reason
for using ++ is to avoid the inefficient and error-prone practice of writing the
same variable name, such as numberOfBunnies, twice in the same statement.
If you write numberOfBunnies only once (as you do when you use ++ or --),
the computer has to figure out what numberOfBunnies means only once. On
top of that, when you write numberOfBunnies only once, you have only one
chance (instead of two chances) to type the variable name incorrectly. With sim-
ple expressions like numberOfBunnies++, these advantages hardly make a
difference. But with more complicated expressions, such as inventoryItems
[(quantityReceived--*itemsPerBox+17)]++, the efficiency and accuracy that
you gain by using ++ and -- are significant.

FIGURE 4-16:
A run of the code

in Figure 4-15.

CHAPTER 4 Making the Most of Variables and Their Values 101

STATEMENTS AND EXPRESSIONS
You can describe the pre- and postincrement and pre- and postdecrement operators in
two ways: the way everyone understands them and the right way. The way that I explain
the concept in most of this section (in terms of time, with before and after) is the way
that everyone understands it. Unfortunately, the way everyone understands the con-
cept isn’t really the right way. When you see ++ or --, you can think in terms of time
sequence. But occasionally a programmer uses ++ or -- in a convoluted way, and the
notions of before and after break down. So if you’re ever in a tight spot, think about
these operators in terms of statements and expressions.

First, remember that a statement tells the computer to do something, and an expres-
sion has a value. (I discuss statements in Chapter 3, and I describe expressions else-
where in this chapter.) Which category does numberOfBunnies++ belong to? The
surprising answer is both. The Java code numberOfBunnies++ is both a statement and
an expression.

Assume that, before the computer executes the code out.
println(numberOfBunnies++), the value of numberOfBunnies is 28.

• As a statement, numberOfBunnies++ tells the computer to add 1 to
numberOfBunnies.

• As an expression, the value of numberOfBunnies++ is 28, not 29.

So even though the computer adds 1 to numberOfBunnies, the code out.
println(numberOfBunnies++) really means out.println(28).

Now, almost everything you just read about numberOfBunnies++ is true about
++numberOfBunnies. The only difference is that as an expression, ++numberOf
Bunnies behaves in a more intuitive way.

• As a statement, ++numberOfBunnies tells the computer to add 1 to
numberOfBunnies.

• As an expression, the value of ++numberOfBunnies is 29.

So, with out.println(++numberOfBunnies), the computer adds 1 to the variable
numberOfBunnies, and the code out.println(++numberOfBunnies) really means
out.println(29).

102 PART 2 Writing Your Own Java Programs

Before you run the following code, try to predict what the code’s output will be.
Then run the code to find out whether your prediction is correct:

public class Main {

 public static void main(String[] args) {

 int i = 10;

 System.out.println(i++);
 System.out.println(--i);

 --i;

 i--;

 System.out.println(i);

 System.out.println(++i);
 System.out.println(i--);

 System.out.println(i);

 i++;
 i = i++ + ++i;
 System.out.println(i);

 i = i++ + i++;
 System.out.println(i);

 }

}

Type the boldface text, one line after another, into JShell, and see how JShell
responds.

jshell> int i = 8

jshell> i++
jshell> i

jshell> i

jshell> i++
jshell> i

jshell> ++i

jshell> i

Assignment operators
If you read the preceding section, which is about operators that add 1, you may be
wondering whether you can manipulate these operators to add 2 or add 5 or add
1000000. Can you write numberOfBunnies++++ and still call yourself a Java pro-
grammer? Well, you can’t. If you try it, an error message appears when you try to
compile your code.

What can you do? As luck would have it, Java has plenty of assignment operators
you can use. With an assignment operator, you can add, subtract, multiply, or divide

CHAPTER 4 Making the Most of Variables and Their Values 103

by anything you want. You can do other cool operations, too. Listing 4-8 has a
smorgasbord of assignment operators (the things with equal signs). Figure 4-17
shows the output from running Listing 4-8.

LISTING 4-8: Assignment Operators

public class UseAssignmentOperators {

 public static void main(String args[]) {

 int numberOfBunnies = 27;

 int numberExtra = 53;

 numberOfBunnies += 1;
 System.out.println(numberOfBunnies);

 numberOfBunnies += 5;
 System.out.println(numberOfBunnies);

 numberOfBunnies += numberExtra;
 System.out.println(numberOfBunnies);

 numberOfBunnies *= 2;

 System.out.println(numberOfBunnies);

 System.out.println(numberOfBunnies -= 7);

 System.out.println(numberOfBunnies = 100);

 }

}

Listing 4-8 shows how versatile Java’s assignment operators are. With the
 assignment operators, you can add, subtract, multiply, or divide a variable by any
number. Notice how += 5 adds 5 to numberOfBunnies, and how *= 2 multiplies
numberOfBunnies by 2. You can even use another expression’s value (in Listing 4-8,
numberExtra) as the number to be applied.

FIGURE 4-17:
A run of the code

in Listing 4-8.

104 PART 2 Writing Your Own Java Programs

The last two lines in Listing 4-8 demonstrate a special feature of Java’s assign-
ment operators. You can use an assignment operator as part of a larger Java state-
ment. In the next-to-last line of Listing 4-8, the operator subtracts 7 from
numberOfBunnies, decreasing the value of numberOfBunnies from 172 to 165.
Then the whole assignment business is stuffed into a call to System.out.println,
so 165 prints onscreen.

Lo and behold, the last line of Listing 4-8 shows how you can do the same thing
with Java’s plain old equal sign. The thing that I call an assignment statement
near the start of this chapter is really one of the assignment operators that I
describe in this section. Therefore, whenever you assign a value to something, you
can make that assignment be part of a larger statement.

Each use of an assignment operator does double duty as a statement and an
expression. In all cases, the expression’s value equals whatever value you
assign. For example, before executing the code System.out.println(number
OfBunnies -= 7), the value of numberOfBunnies is 172. As a statement, number
OfBunnies -= 7 tells the computer to subtract 7 from numberOfBunnies
(so the value of numberOfBunnies goes from 172 to 165). As an expression,
the value of numberOfBunnies -= 7 is 165. So the code System.out.println
(numberOfBunnies -= 7) really means System.out.println(165). The num-
ber 165 displays on the computer screen.

For a richer explanation of this kind of thing, see the sidebar “Statements and
expressions,” earlier in this chapter.

Before you run the following code, try to predict what the code’s output will be.
Then run the code to find out whether your prediction is correct:

public class Main {

 public static void main(String[] args) {

 int i = 10;

 i += 2;
 i -= 5;

 i *= 6;

 System.out.println(i);

 System.out.println(i += 3);
 System.out.println(i /= 2);

 }

}

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 105

IN THIS CHAPTER

 » Writing statements that choose
between alternatives

 » Forming logical conditions

 » Putting statements inside one
another

 » Choosing among many alternatives

Controlling Program
Flow with Decision-
Making Statements

The TV show Dennis the Menace aired on CBS from 1959 to 1963. I remember
one episode in which Mr. Wilson was having trouble making an important
decision. I think it was something about changing jobs or moving to a new

town. Anyway, I can still see that shot of Mr. Wilson sitting in his yard, sipping
lemonade, and staring into nowhere for the whole afternoon. Of course, the
annoying character Dennis was constantly interrupting Mr. Wilson’s peace and
quiet. That’s what made this situation funny.

What impressed me about this episode (the reason I remember it clearly even
now) was Mr. Wilson’s dogged intent in making the decision. This guy wasn’t
going about his everyday business, roaming around the neighborhood while
thoughts about the decision wandered in and out of his mind. He was sitting qui-
etly in his yard, making marks carefully and logically on his mental balance sheet.
How many people actually make decisions this way?

At that time, I was still pretty young. I’d never faced the responsibility of making
a big decision that affected my family and me. But I wondered what such a
 decision-making process would be like. Would it help to sit there like a stump for

Chapter 5

106 PART 2 Writing Your Own Java Programs

hours on end? Would I make my decisions by the careful weighing and tallying of
options? Or would I shoot in the dark, take risks, and act on impulse? Only time
would tell.

Making Decisions (Java if Statements)
When you’re writing computer programs, you’re constantly hitting forks in roads.
Did the user correctly type the password? If yes, let the user work; if no, kick the
bum out. So the Java programming language needs a way of making a program
branch in one of two directions. Fortunately, the language has a way: It’s called an
if statement.

Guess the number
Listing 5-1 illustrates the use of an if statement. Two runs of the program in
Listing 5-1 are shown in Figure 5-1.

LISTING 5-1: A Guessing Game

import static java.lang.System.out;

import java.util.Scanner;

import java.util.Random;

public class GuessingGame {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Enter an int from 1 to 10: ");

 int inputNumber = keyboard.nextInt();

 int randomNumber = new Random().nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 out.println("**********");

 out.println("*You win.*");

 out.println("**********");

 } else {

 out.println("You lose.");

 out.print("The random number was ");

 out.println(randomNumber + ".");
 }

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 107

 out.println("Thank you for playing.");

 keyboard.close();

 }

}

The program in Listing 5-1 plays a guessing game with the user. The program gets
a number (a guess) from the user and then generates a random number between
1 and 10. If the number that the user entered is the same as the random number,
the user wins. Otherwise, the user loses and the program tells the user what the
random number was.

She controlled keystrokes
from the keyboard
Taken together, the lines

import java.util.Scanner;

 Scanner keyboard = new Scanner(System.in);

 int inputNumber = keyboard.nextInt();

in Listing 5-1 get whatever number the user types on the computer’s keyboard.
The last of the three lines puts this number into a variable named inputNumber. If
these lines look complicated, don’t worry: You can copy these lines almost word
for word whenever you want to read from the keyboard. Include the first two lines
(the import and Scanner lines) just once in your program. Later in your program,
wherever the user types an int value, include a line with a call to nextInt (as in
the last of the preceding three lines of code).

FIGURE 5-1:
Two runs of the
guessing game.

108 PART 2 Writing Your Own Java Programs

Of all the names in these three lines of code, the only two names that I coined
myself are inputNumber and keyboard. All the other names are part of Java. So, if I
want to be creative, I can write the lines this way:

import java.util.Scanner;

 Scanner readingThingie = new Scanner(System.in);

 int valueTypedIn = readingThingie.nextInt();

I can also beef up my program’s import declarations, as I do later on in
Listings 5-2 and 5-3. Other than that, I have very little leeway.

As you read on in this book, you’ll start recognizing the patterns behind these
three lines of code, so I don’t clutter up this section with all the details. For now,
you can just copy these three lines and keep the following in mind:

 » When you import java.util.Scanner, you don’t use the word static.

But importing Scanner is different from importing System.out. When
you import java.lang.System.out, you use the word static. (Refer to
Listing 5-1.) The difference creeps into the code because Scanner is the
name of a class, and System.out isn’t the name of a class.

For a quick look at the use of the word static in import declarations, see the
sidebar in Chapter 4 about import declarations: the ugly truth. For a more
complete story about the word, see Chapter 10.

 » Typically (on a desktop or laptop computer), the name System.in stands
for the keyboard.

To get characters from some place other than the keyboard, you can type
something other than System.in inside the parentheses.

What else can you put inside the new Scanner(...) parentheses? For some
ideas, see Chapter 8.

In Listing 5-1, I make the arbitrary decision to give one of my variables the
name keyboard. The name keyboard reminds you, the reader, that this
variable refers to a bunch of plastic buttons in front of your computer.
Naming something keyboard doesn’t tell Java anything about plastic buttons
or about user input. On the other hand, the name System.in always tells
Java about those plastic buttons. The code Scanner keyboard = new
Scanner(System.in) in Listing 5-1 connects the name keyboard with the
plastic buttons that we all know and love.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 109

 » When you expect the user to type an int value (a whole number of some
kind), use nextInt().

If you expect the user to type a double value (a number containing a decimal
point), use nextDouble(). If you expect the user to type true or false, use
nextBoolean(). If you expect the user to type a word like Barry, Java, or Hello,
use next().

Decimal points vary from one country to another. In the United States, 10.5
(with a period) represents ten-and-a-half, but in France, 10,5 (with a comma)
represents ten-and-a-half. In the Persian language, a decimal point looks like
a slash (but it sits a bit lower than the digit characters). Your computer’s
operating system stores information about the country you live in, and Java
reads that information to decide what ten-and-a-half looks like. If you run a
program containing a nextDouble() method call, and Java responds with
an InputMismatchException, check your input. You might have input 10.5
when your country’s conventions require 10,5 (or another way of representing
ten-and-a-half). For more information, see the “Where on Earth do you live?”
sidebar in Chapter 8.

For an example in which the user types a word, see Listing 5-3, later in this
chapter. For an example in which the user types a single character, see
Listing 6-4, in Chapter 6. For an example in which a program reads an entire
line of text (all in one big gulp), see Chapter 8.

 » You can get several values from the keyboard, one after another.

To do this, use the keyboard.nextInt() code several times.

To see a program that reads more than one value from the keyboard, go to
Listing 5-4, later in this chapter.

 » Whenever you use Java’s Scanner, you should call the close method after your
last nextInt call (or your last nextDouble call, or your last nextWhatever call).

In Listing 5-1, the main method’s last statement is

keyboard.close();

This statement does some housekeeping to disconnect the Java program from
the computer keyboard. (The amount of required housekeeping is more than
you might think!) If I omit this statement from Listing 5-1, nothing terrible
happens. Java’s Virtual Machine usually cleans up after itself very nicely. But
using close() to explicitly detach from the keyboard is good practice, and
some IDEs display warnings if you omit the keyboard.close() statement.
In this book’s example, I always remember to close my Scanner variables.

110 PART 2 Writing Your Own Java Programs

In Chapter 13, I show you a more reliable way to incorporate the keyboard.
close() statement in your Java program.

When your program calls System.out.println, your program uses the
computer’s screen. So why don’t you call a close method after all your
System.out.println calls? The answer is subtle. In Listing 5-1, your own
code connects to the keyboard by calling new Scanner(System.in). So, later
in the program, your code cleans up after itself by calling the close method.
But with System.out.println, your own code doesn’t create a connection to
the screen. (The out variable refers to a PrintStream, but you don’t call new
PrintStream() to prepare for calling System.out.println.) Instead, the
Java Virtual Machine connects to the screen on your behalf. The Java Virtual
Machine’s code (which you never have to see) contains a call to new
PrintStream() in preparation for your calling System.out.println. So,
because it’s a well-behaved piece of code, the Java Virtual Machine eventually
calls out.close() without any effort on your part.

Creating randomness
Achieving real randomness is surprisingly difficult. Mathematician Persi Diaconis
says that if you flip a coin several times, always starting with the head side up,
you’re likely to toss heads more often than tails. If you toss several more times,
always starting with the tail side up, you’ll likely toss tails more often than heads.
In other words, coin tossing isn’t really fair.*

Computers aren’t much better than coins and human thumbs. A computer mimics
the generation of random sequences, but in the end the computer just does what
it’s told and does all of this in a purely deterministic fashion. So in Listing 5-1,
when the computer executes

import java.util.Random;

 int randomNumber = new Random().nextInt(10) + 1;

the computer appears to give a randomly generated number — a whole number
between 1 and 10. But it’s all a fake. The computer only follows instructions. It’s
not really random, but without bending a computer over backward, it’s the best
that anyone can do.

*Diaconis, Persi. “The Search for Randomness.” American Association for the
Advancement of Science annual meeting. Seattle. 14 Feb. 2004.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 111

Once again, I ask you to take this code on blind faith. Don’t worry about what new
Random().nextInt means until you have more experience with Java. Just copy
this code into your own programs and have fun with it. And if the numbers from 1
to 10 aren’t in your flight plans, don’t fret. To roll an imaginary die, write the
statement

int rollEmBaby = new Random().nextInt(6) + 1;

With the execution of this statement, the variable rollEmBaby gets a value from
1 to 6.

The if statement
At the core of Listing 5-1 is a Java if statement. This if statement represents a
fork in the road. (See Figure 5-2.) The computer follows one of two prongs — the
prong that prints You win or the prong that prints You lose. The computer decides
which prong to take by testing the truth or falsehood of a condition. In Listing 5-1,
the condition being tested is

inputNumber == randomNumber

Does the value of inputNumber equal the value of randomNumber? When the condi-
tion is true, the computer does the stuff between the condition and the word else.
When the condition turns out to be false, the computer does the stuff after the

FIGURE 5-2:
An if statement

is like a fork in
the road.

112 PART 2 Writing Your Own Java Programs

word else. Either way, the computer goes on to execute the last println call, which
displays Thank you for playing.

The condition in an if statement must be enclosed in parentheses. However,
a line like if (inputNumber == randomNumber) is not a complete statement
(just as “If I had a hammer” isn’t a complete sentence). So this line if (input
Number == randomNumber) shouldn’t end with a semicolon.

Sometimes, when I’m writing about a condition that’s being tested, I slip into
using the word expression instead of condition. That’s okay because every condition
is an expression. An expression is something that has a value and, sure enough,
every condition has a value. The condition’s value is either true or false. (For
revealing information about expressions and values like true and false, see
Chapter 4.)

The double equal sign
In Listing 5-1, in the if statement’s condition, notice the use of the double equal
sign. Comparing two numbers to see whether they’re the same isn’t the same as
setting something equal to something else. That’s why the symbol to compare for
equality isn’t the same as the symbol that’s used in an assignment or an initial-
ization. In an if statement’s condition, you can’t replace the double equal sign
with a single equal sign. If you do, your program just won’t work. (You almost
always get an error message when you try to compile your code.)

On the other hand, if you never make the mistake of using a single equal sign in a
condition, you’re not normal. Not long ago, while I was teaching an introductory
Java course, I promised that I’d swallow my laser pointer if no one made the single
equal sign mistake during any of the lab sessions. This wasn’t an idle promise.
I knew I’d never have to keep it. As it turned out, even if I had ignored the first ten
times anybody made the single equal sign mistake during those lab sessions,
I would still be laser-pointer-free. Everybody mistakenly uses the single equal
sign several times in a programming career.

The trick is not to avoid making the single-equal-sign mistake; the trick is to
catch the mistake whenever you make it.

Brace yourself
The if statement in Listing 5-1 has two halves: a top half and a bottom half. I have
names for these two parts of an if statement. I call them the if part (the top half)
and the else part (the bottom half).

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 113

The if part in Listing 5-1 seems to have more than one statement in it. I make this
happen by enclosing the three statements of the if part in a pair of curly braces.
When I do this, I form a block. A block is a bunch of statements scrunched together
by a pair of curly braces.

With this block, three calls to println are tucked away safely inside the if part.
With the curly braces, the rows of asterisks and the words You win display only
when the user’s guess is correct.

This business with blocks and curly braces applies to the else part as well. In List-
ing 5-1, whenever inputNumber doesn’t equal randomNumber, the computer exe-
cutes three print/println calls. To convince the computer that all three of these
calls are inside the else clause, I put these calls into a block. That is, I enclose
these three calls in a pair of curly braces.

Strictly speaking, Listing 5-1 has only one statement between the if and the else
statements and only one statement after the else statement. The trick is that
when you place a bunch of statements inside curly braces, you get a block; and a
block behaves, in all respects, like a single statement. In fact, the official Java
documentation lists blocks as one of the many kinds of statements. So, in List-
ing 5-1, the block that prints You win and asterisks is a single statement that has,
within it, three smaller statements.

Indenting if statements in your code
Notice how, in Listing 5-1, the print and println calls inside the if statement
are indented. (This includes both the You win and You lose statements. The
print and println calls that come after the word else are still part of the if
statement.) Strictly speaking, you don’t have to indent the statements that are
inside an if statement. For all the compiler cares, you can write your whole pro-
gram on a single line or place all your statements in an artful, misshapen zigzag.
The problem is that neither you nor anyone else can make sense of your code if
you don’t indent your statements in some logical fashion. In Listing 5-1, the
indenting of the print and println statements helps your eye (and brain) see
quickly that these statements are subordinate to the overall if/else flow.

In a small program, unindented or poorly indented code is barely tolerable. But in
a complicated program, indentation that doesn’t follow a neat, logical pattern is a
big, ugly nightmare.

Many Java IDEs have tools to indent your code automatically. In fact, code inden-
tation is one of my favorite IDE features. So don’t walk — run — to a computer,
and visit this book’s website (www.allmycode.com/JavaForDummies) for more
information on what Java IDEs can offer.

http://www.allmycode.com/JavaForDummies

114 PART 2 Writing Your Own Java Programs

When you write if statements, you may be tempted to chuck out the window all
the rules about curly braces and simply rely on indentation. This works in other
programming languages, such as Python and Haskell, but it doesn’t work in Java.
If you indent three statements after the word else and forget to enclose those
statements in curly braces, the computer thinks that the else part includes only
the first of the three statements. What’s worse, the indentation misleads you into
believing that the else part includes all three statements. This makes it more dif-
ficult for you to figure out why your code isn’t behaving the way you think it
should. Watch those braces!

Elseless in Ifrica
Okay, so the title of this section is contrived. Big deal! The idea is that you can
create an if statement without the else part. Take, for instance, the code in
 Listing 5-1, shown earlier. Maybe you’d rather not rub it in whenever the user
loses the game. The modified code in Listing 5-2 shows you how to do this (and
Figure 5-3 shows you the result).

LISTING 5-2: A Kinder, Gentler Guessing Game

import static java.lang.System.in;

import static java.lang.System.out;

import java.util.Scanner;

import java.util.Random;

public class DontTellThemTheyLost {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(in);

 out.print("Enter an int from 1 to 10: ");

 int inputNumber = keyboard.nextInt();

 int randomNumber = new Random().nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 out.println("*You win.*");

 }

 out.println("That was a very good guess :-)");

 out.print("The random number was ");

 out.println(randomNumber + ".");
 out.println("Thank you for playing.");

 keyboard.close();

 }

}

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 115

The if statement in Listing 5-2 has no else part. When inputNumber is the same
as randomNumber, the computer prints You win. When inputNumber is different
from randomNumber, the computer doesn’t print You win.

Listing 5-2 illustrates another new idea. With an import declaration for System.
in, I can reduce new Scanner(System.in) to the shorter new Scanner(in). Add-
ing this import declaration is hardly worth the effort. In fact, I do more typing
with the import declaration than without it. Nevertheless, the code in Listing 5-2
demonstrates that it’s possible to import System.in.

In Chapter 4, Listing 4-5 tells you whether you can or cannot fit ten people on an
elevator. A run of the listing’s code looks something like this:

True or False?

You can fit all ten of the

Brickenchicker dectuplets

on the elevator:

false

Use what you know about Java’s if statements to make the program’s output
more natural. Depending on the value of the program’s elevatorWeightLimit
variable, the output should be either

You can fit all ten of the

Brickenchicker dectuplets

on the elevator.

or

You can't fit all ten of the

Brickenchicker dectuplets

on the elevator.

FIGURE 5-3:
Two runs of the

game in
Listing 5-2.

116 PART 2 Writing Your Own Java Programs

Using Blocks in JShell
Chapter 4 introduces Java 9’s interactive JShell environment. You type a state-
ment, and JShell responds immediately by executing the statement. That’s fine
for simple statements, but what happens when you have a statement inside of a
block?

In JShell, you can start typing a statement with one or more blocks. JShell doesn’t
respond until you finish typing the entire statement — blocks and all. To see how
it works, look over this conversation that I had recently with JShell:

jshell> import static java.lang.System.out

jshell> import java.util.Random

jshell> int randomNumber = new Random().nextInt(10) + 1

randomNumber ==> 4

jshell> int inputNumber = 4

inputNumber ==> 4

jshell> if (inputNumber == randomNumber) {

 ...> out.println("*You win.*");

 ...> }

You win.

jshell>

In this dialogue, I’ve set the text that I type in bold. JShell’s responses aren’t set
in bold.

When I type if (inputNumber == randomNumber) { and press Enter, JShell
doesn’t do much. JShell only displays a ...> prompt, which indicates that what-
ever lines I’ve typed don’t form a complete statement. I have to respond by typing
the rest of the if statement.

When I finish the if statement with a close curly brace, JShell finally acknowl-
edges that I’ve typed an entire statement. JShell executes the statement and (in
this example) displays *You win.*.

Notice the semicolon at the end of the out.println line:

 » When you type a statement that’s not inside of a block, JShell lets you omit the
semicolon at the end of the statement.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 117

 » When you type a statement that’s inside of a block, JShell (like the plain old
Java in Listing 5-2) doesn’t let you omit the semicolon.

When you type a block in JShell, you always have the option of typing the entire
block on one line, with no line breaks, like so:

if (inputNumber == randomNumber) { out.println("*You win.*"); }

Forming Conditions with Comparisons
and Logical Operators

The Java programming language has plenty of little squiggles and doodads for
your various condition-forming needs. This section tells you all about them.

Comparing numbers; comparing characters
Table 5-1 shows you the operators that you can use to compare one value with
another.

You can use all of Java’s comparison operators to compare numbers and charac-
ters. When you compare numbers, things go pretty much the way you think they
should go. But when you compare characters, things are a little strange. Compar-
ing uppercase letters with one another is no problem. Because the letter B comes
alphabetically before H, the condition 'B' < 'H' is true. Comparing lowercase

TABLE 5-1 Comparison Operators
Operator Symbol Meaning Example

== is equal to numberOfCows == 5

!= is not equal to buttonClicked != panicButton

< is less than numberOfCows < 5

> is greater than myInitial > 'B'

<= is less than or equal to numberOfCows <= 5

>= is greater than or equal to myInitial >= 'B'

118 PART 2 Writing Your Own Java Programs

letters with one another is also okay. What’s strange is that when you compare an
uppercase letter with a lowercase letter, the uppercase letter is always smaller. So,
even though 'Z' < 'A' is false, 'Z' < 'a' is true.

Under the hood, the letters A through Z are stored with numeric codes 65 through
90. The letters a through z are stored with codes 97 through 122. That’s why each
uppercase letter is smaller than each lowercase letter.

Be careful when you compare two numbers for equality (with ==) or inequality
(with !=). After you do some calculations and obtain two double values or two
float values, the values that you have are seldom dead-on equal to one another.
(The problem comes from those pesky digits beyond the decimal point.) For
instance, the Fahrenheit equivalent of 21 degrees Celsius is 69.8, and when you
calculate 9.0 / 5 * 21 + 32 by hand, you get 69.8. But the condition 9.0 / 5 *
21 + 32 == 69.8 turns out to be false. That’s because, when the computer calcu-
lates 9.0 / 5 * 21 + 32, it gets 69.80000000000001, not 69.8.

Comparing objects
When you start working with objects, you find that you can use == and != to com-
pare objects with one another. For instance, a button you see on the computer
screen is an object. You can ask whether the thing that was just mouse-clicked is
a particular button on your screen. You do this with Java’s equality operator:

if (e.getSource() == bCopy) {

 clipboard.setText(which.getText());

To find out more about responding to button clicks, read Chapter 16.

The big gotcha with Java’s comparison scheme comes when you compare two
strings. (For a word or two about Java’s String type, see the section about refer-
ence types in Chapter 4.) When you compare two strings with one another, you
don’t want to use the double equal sign. Using the double equal sign would ask,
“Is this string stored in exactly the same place in memory as that other string?”
Usually, that’s not what you want to ask. Instead, you usually want to ask, “Does
this string have the same characters in it as that other string?” To ask the second
question (the more appropriate question), Java’s String type has a method named
equals. (Like everything else in the known universe, this equals method is
defined in the Java API, short for application programming interface.) The equals
method compares two strings to see whether they have the same characters in
them. For an example using Java’s equals method, see Listing 5-3. (Figure 5-4
shows a run of the program in Listing 5-3.)

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 119

LISTING 5-3: Checking a Password

import static java.lang.System.*;

import java.util.Scanner;

public class CheckPassword {

 public static void main(String args[]) {

 out.print("What's the password?");

 Scanner keyboard = new Scanner(in);

 String password = keyboard.next();

 out.println("You typed >>" + password + "<<");
 out.println();

 if (password == "swordfish") {

 out.println("The word you typed is stored");

 out.println("in the same place as the real");

 out.println("password. You must be a");

 out.println("hacker.");

 } else {

 out.println("The word you typed is not");

 out.println("stored in the same place as");

 out.println("the real password, but that's");

 out.println("no big deal.");

 }

 out.println();

 if (password.equals("swordfish")) {

 out.println("The word you typed has the");

 out.println("same characters as the real");

FIGURE 5-4:
The results of
using == and

using Java’s
equals method.

(continued)

120 PART 2 Writing Your Own Java Programs

 out.println("password. You can use our");

 out.println("precious system.");

 } else {

 out.println("The word you typed doesn't");

 out.println("have the same characters as");

 out.println("the real password. You can't");

 out.println("use our precious system.");

 }

 keyboard.close();

 }

}

In Listing 5-3, the call keyboard.next() grabs whatever word the user types on
the computer keyboard. The code shoves this word into the variable named
password. Then the program’s if statements use two different techniques to
 compare password with "swordfish".

The more appropriate of the two techniques uses Java’s equals method. The
equals method looks funny because when you call it, you put a dot after one string
and put the other string in parentheses. But that’s the way you have to do it.

In calling Java’s equals method, it doesn’t matter which string gets the dot and
which gets the parentheses. For instance, in Listing 5-3, you could have written

if ("swordfish".equals(password))

The method would work just as well.

A call to Java’s equals method looks imbalanced, but it’s not. There’s a reason
behind the apparent imbalance between the dot and the parentheses. The idea is
that you have two objects: the password object and the "swordfish" object. Each
of these two objects is of type String. (However, password is a variable of type
String, and "swordfish" is a String literal.) When you write password.
equals("swordfish"), you’re calling an equals method that belongs to the
password object. When you call that method, you’re feeding "swordfish" to the
method as the method’s parameter (pun intended).

You can read more about methods belonging to objects in Chapter 7.

LISTING 5-3: (continued)

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 121

When comparing strings with one another, use the equals method — not the
double equal sign.

Importing everything in one fell swoop
The first line of Listing 5-3 illustrates a lazy way of importing both System.out
and System.in. To import everything that System has to offer, you use the aster-
isk wildcard character (*). In fact, importing java.lang.System.* is like having
about 30 separate import declarations, including System.in, System.out,
System.err, System.nanoTime, and many other System things.

The use of an asterisk in an import declaration is generally considered bad pro-
gramming practice, so I don’t do it often in this book’s examples. But for larger
programs — programs that use dozens of names from the Java API — the lazy
asterisk trick is handy.

You can’t toss an asterisk anywhere you want inside an import declaration. For
example, you can’t import everything starting with java by writing import
java.*. You can substitute an asterisk only for the name of a class or for the name
of something static that’s tucked away inside a class. For more information about
asterisks in import declarations, see Chapter 9. For information about static
things, see Chapter 10.

Java’s logical operators
Mr. Spock would be pleased: Java has all the operators that you need for mixing
and matching logical tests. The operators are shown in Table 5-2.

You can use these operators to form all kinds of elaborate conditions. Listing 5-4
has an example.

TABLE 5-2 Logical Operators
Operator Symbol What It Means Example

&& and 5 < x && x < 10

|| or x < 5 || 10 < x

! not !password.equals("swordfish")

122 PART 2 Writing Your Own Java Programs

LISTING 5-4: Checking Username and Password

import javax.swing.JOptionPane;

public class Authenticator {

 public static void main(String args[]) {

 String username = JOptionPane.showInputDialog("Username:");

 String password = JOptionPane.showInputDialog("Password:");

 if (

 username != null && password != null &&

 (

 (username.equals("bburd") && password.equals("swordfish")) ||

 (username.equals("hritter") && password.equals("preakston"))

)

)

 {

 JOptionPane.showMessageDialog(null, "You're in.");

 } else {

 JOptionPane.showMessageDialog(null, "You're suspicious.");

 }

 }

}

Several runs of the program of Listing 5-4 are shown in Figure 5-5. When the
username is bburd and the password is swordfish or when the username is hritter
and the password is preakston, the user gets a nice message. Otherwise, the user is
a bum who gets the nasty message that he or she deserves.

Confession: Figure 5-5 is a fake! To help you read the usernames and passwords, I
added an extra statement to Listing 5-4. The extra statement (UIManager.
put("TextField.font", new Font("Dialog", Font.BOLD, 14))) enlarges each
text field’s font size. Yes, I modified the code before creating the figure. Shame
on me!

Listing 5-4 illustrates a new way to get user input; namely, to show the user an
input dialog box. The statement

String password = JOptionPane.showInputDialog("Password:");

in Listing 5-4 performs more or less the same task as the statement

String password = keyboard.next();

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 123

from Listing 5-3. The big difference is, while keyboard.next() displays dull-
looking text in a console, JOptionPane.showInputDialog("Username:") displays
a fancy dialog box containing a text field and buttons. (Compare Figures 5-4
and 5-5.) When the user clicks OK, the computer takes whatever text is in the text
field and hands that text over to a variable. In fact, Listing 5-4 uses JOptionPane.
showInputDialog twice — once to get a value for the username variable and a
second time to get a value for the password variable.

Near the end of Listing 5-4, I use a slight variation on the JOptionPane
business,

JOptionPane.showMessageDialog(null, "You're in.");

With showMessageDialog, I show a very simple dialog box — a box with no text
field. (Again, see Figure 5-5.)

Like thousands of other names, the name JOptionPane is defined in Java’s API.
(To be more specific, JOptionPane is defined inside something called javax.
swing, which in turn is defined inside Java’s API.) So, to use the name JOption
Pane throughout Listing 5-4, I import javax.swing.JOptionPane at the top of
the listing.

FIGURE 5-5:
Several runs of
the code from

Listing 5-4.

124 PART 2 Writing Your Own Java Programs

In Listing 5-4, JOptionPane.showInputDialog works nicely because the user’s
input (username and password) are mere strings of characters. If you want the
user to input a number (an int or a double, for example), you have to do some
extra work. For example, to get an int value from the user, type something like
int numberOfCows = Integer.parseInt(JOptionPane.showInputDialog("How
many cows?")). The extra Integer.parseInt stuff forces your text field’s input
to be an int value. To get a double value from the user, type something like
double fractionOfHolsteins = Double.parseDouble(JOptionPane.showInpu
tDialog("Holsteins:")). The extra Double.parseDouble business forces your
text field’s input to be a double value.

Vive les nuls!
The French translations of For Dummies books are books Pour les Nuls. So a
“dummy” in English is a “nul” in French.* But in Java, the word null means
“nothing.” When you see

if (

 username != null

in Listing 5-4, you can imagine that you see

if (

 username isn't nothing

or

if (

 username has any value at all

To find out how username can have no value, see the last row in Figure 5-5.
When you click Cancel in the first dialog box, the computer hands null to your
program. So, in Listing 5-4, the variable username becomes null. The compari-
sons username != null checks to make sure that you haven’t clicked Cancel in
the program’s first dialog box. The comparison password != null performs the
same kind of check for the program’s second dialog box. When you see the if
statement in Listing 5-4, you can imagine that you see the following:

*In Russian, a “dummy” is a “чaйник” which, when interpreted literally, means a
“teapot.” So in Russian, this book is “Java For Teapots.” I’ve never been called a
“teapot,” and I’m not sure how I’d react if I were.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 125

if (

 you didn't press Cancel in the username dialog and

 you didn't press Cancel in the password dialog and

 (

 (you typed bburd in the username dialog and

 you typed swordfish in the password dialog) or

 (you typed hritter in the username dialog and

 you typed preakston in the password dialog)

)

)

In Listing 5-4, the comparisons username != null and password != null are not
optional. If you forget to include these and click Cancel when the program runs,
you get a nasty NullPointerException message, and the program comes crash-
ing down before your eyes. The word null represents nothing, and in Java, you
can’t compare nothing to a string like "bburd" or "swordfish". In Listing 5-4,
the purpose of the comparison username != null is to prevent Java from moving
on to check username.equals("bburd") whenever you happen to click Cancel.
Without this preliminary username != null test, you’re courting trouble.

The last couple of nulls in Listing 5-4 are different from the others. In the code
JOptionPane.showMessageDialog (null, "You're in."), the word null stands
for “no other dialog box.” In particular, the call showMessageDialog tells Java to
pop up a new dialog box, and the word null indicates that the new dialog box
doesn’t grow out of any existing dialog box. One way or another, Java insists that
you say something about the origin of the newly popped dialog box. (For some
reason, Java doesn’t insist that you specify the origin of the showInputDialog
box. Go figure!) Anyway, in Listing 5-4, having a showMessageDialog box pop up
from nowhere is quite useful.

(Conditions in parentheses)
Keep an eye on those parentheses! When you’re combining conditions with logical
operators, it’s better to waste typing effort and add unneeded parentheses than to
goof up your result by using too few parentheses. Take, for example, the
expression

2 < 5 || 100 < 6 && 27 < 1

By misreading this expression, you might conclude that the expression is false.
That is, you could wrongly read the expression as meaning (something-or-
other) && 27 < 1. Because 27 < 1 is false, you would conclude that the whole
expression is false. The fact is that, in Java, any && operator is evaluated before

126 PART 2 Writing Your Own Java Programs

any || operator. So the expression really asks whether 2 < 5 || (something-or-
other). Because 2 < 5 is true, the whole expression is true.

To change the expression’s value from true to false, you can put the expres-
sion’s first two comparisons in parentheses, like this:

(2 < 5 || 100 < 6) && 27 < 1

Java’s || operator is inclusive. This means that you get a true value whenever the
thing on the left side is true, the thing on the right side is true, or both things are
true. For instance, the expression 2 < 10 || 20 < 30 is true.

In Java, you can’t combine comparisons the way you do in ordinary English. In
English, you may say, “We’ll have between three and ten people at the dinner
table.” But in Java, you get an error message if you write 3 <= people <= 10. To
do this comparison, you need something like 3 <= people && people <= 10.

In Listing 5-4, the if statement’s condition has more than a dozen parentheses.
What happens if you omit two of them?

if (

 username != null && password != null &&

 // open parenthesis omitted

 (username.equals("bburd") && password.equals("swordfish")) ||

 (username.equals("hritter") && password.equals("preakston"))

 // close parenthesis omitted

)

Java tries to interpret your wishes by grouping everything before the “or” (the ||
operator):

if (

 username != null && password != null &&

 (username.equals("bburd") && password.equals("swordfish"))

 ||

 (username.equals("hritter") && password.equals("preakston"))

)

When the user clicks Cancel and username is null, Java says, “Okay! The stuff
before the || operator is false, but maybe the stuff after the || operator is true. I’ll
check the stuff after the || operator to find out whether it’s true.” (Java often
talks to itself. The psychiatrists are monitoring this situation.)

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 127

Anyway, when Java finally checks username.equals("hritter"), your program
aborts with an ugly NullPointerException message. You’ve made Java angry by
trying to apply .equals to a null username. (Psychiatrists have recommended
anger management sessions for Java, but Java’s insurance plan refuses to pay for
the sessions.)

Make some changes to the code in Listing 5-4:

 » Add a third username/password combination to the list of acceptable logins.

 » Modify the if statement’s condition so that an all-uppercase entry for either
username is acceptable. In other words, the input BBURD yields the same
result as bburd and the input HRITTER yields the same result as hritter.

 » In Listing 5-4, change

username != null && password != null

to

!(username == null || password == null)

Does the program still work? Why, or why not?

 » In Listing 5-4, change

username != null && password != null

to

!(username == null && password == null)

This is almost the same as the previous experiment. The only difference is the
use of && instead of || between the two == null tests.

Does the program still work? Why, or why not?

Building a Nest
Have you seen those cute Russian matryoshka nesting dolls? Open one, and
another one is inside. Open the second, and a third one is inside it. You can do
the same thing with Java’s if statements. (Talk about fun!) Listing 5-5 shows
you how.

128 PART 2 Writing Your Own Java Programs

LISTING 5-5: Nested if Statements

import static java.lang.System.out;

import java.util.Scanner;

public class Authenticator2 {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Username: ");

 String username = keyboard.next();

 if (username.equals("bburd")) {

 out.print("Password: ");

 String password = keyboard.next();

 if (password.equals("swordfish")) {

 out.println("You're in.");

 } else {

 out.println("Incorrect password");

 }

 } else {

 out.println("Unknown user");

 }

 keyboard.close();

 }

}

Figure 5-6 shows several runs of the code in Listing 5-5. The main idea is that to
log on, you have to pass two tests. (In other words, two conditions must be true.)
The first condition tests for a valid username; the second condition tests for the
correct password. If you pass the first test (the username test), you march right
into another if statement that performs a second test (the password test). If you
fail the first test, you never make it to the second test. Figure 5-7 shows the
 overall plan.

The code in Listing 5-5 does a good job with nested if statements, but it does a
terrible job with real-world user authentication. First, never show a password in
plain view (without asterisks to masquerade the password). Second, don’t handle
passwords without encrypting them. Third, don’t tell the malicious user which of
the two words (the username or the password) was entered incorrectly.
Fourth . . . well, I could go on and on. The code in Listing 5-5 just isn’t meant to
illustrate good username/password practices.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 129

Modify the program in Listing 5-4 so that, if the user clicks Cancel for either the
username or the password, the program replies with a Not enough information
message.

FIGURE 5-6:
Three runs of

the code in
Listing 5-5.

FIGURE 5-7:
Don’t try eating

with this fork.

130 PART 2 Writing Your Own Java Programs

Choosing among Many Alternatives
(Java switch Statements)

I’m the first to admit that I hate making decisions. If things go wrong, I would
rather have the problem be someone else’s fault. Writing the previous sections (on
making decisions with Java’s if statement) knocked the stuffing right out of me.
That’s why my mind boggles as I begin this section on choosing among many
alternatives. What a relief it is to have that confession out of the way!

Your basic switch statement
Now, it’s time to explore situations in which you have a decision with many
branches. Take, for instance, the popular campfire song “Al’s All Wet.” (For a
review of the lyrics, see the “Al’s All Wet” sidebar.) You’re eager to write code that
prints this song’s lyrics. Fortunately, you don’t have to type all the words over and
over again. Instead, you can take advantage of the repetition in the lyrics.

“AL’S ALL WET”
Sung to the tune of “Gentille Alouette”:

Al’s all wet. Oh, why is Al all wet? Oh,

Al’s all wet ’cause he’s standing in the rain.

Why is Al out in the rain?

That’s because he has no brain.

Has no brain, has no brain,

In the rain, in the rain.

Ohhhhhhhh ...

Al’s all wet. Oh, why is Al all wet? Oh,

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 131

Al’s all wet ’cause he’s standing in the rain.

Why is Al out in the rain?

That’s because he is a pain.

He’s a pain, he’s a pain,

Has no brain, has no brain,

In the rain, in the rain.

Ohhhhhhhh ...

Al’s all wet. Oh, why is Al all wet? Oh,

Al’s all wet ’cause he’s standing in the rain.

Why is Al out in the rain?

’Cause this is the last refrain.

Last refrain, last refrain,

He’s a pain, he’s a pain,

Has no brain, has no brain,

In the rain, in the rain.

Ohhhhhhhh ...

Al’s all wet. Oh, why is Al all wet? Oh,

Al’s all wet ’cause he’s standing in the rain.

—Harriet Ritter and Barry Burd

132 PART 2 Writing Your Own Java Programs

A complete program to display the “Al’s All Wet” lyrics won’t come until
 Chapter 6. In the meantime, assume that you have a variable named verse. The
value of verse is 1, 2, 3, or 4, depending on which verse of “Al’s All Wet” you’re
trying to print. You could have a big, clumsy bunch of if statements that checks
each possible verse number:

if (verse == 1) {

 out.println("That's because he has no brain.");

}

if (verse == 2) {

 out.println("That's because he is a pain.");

}

if (verse == 3) {

 out.println("'Cause this is the last refrain.");

}

But that approach seems wasteful. Why not create a statement that checks the
value of verse just once and then takes an action based on the value it finds? For-
tunately, just such a statement exists. It’s called a switch statement. Listing 5-6
has an example of a switch statement.

LISTING 5-6: A switch Statement

import static java.lang.System.out;

import java.util.Scanner;

public class JustSwitchIt {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Which verse? ");

 int verse = keyboard.nextInt();

 switch (verse) {

 case 1:

 out.println("That's because he has no brain.");

 break;

 case 2:

 out.println("That's because he is a pain.");

 break;

 case 3:

 out.println("'Cause this is the last refrain.");

 break;

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 133

 default:

 out.println("No such verse. Please try again.");

 break;

 }

 out.println("Ohhhhhhhh");

 keyboard.close();

 }

}

Figure 5-8 shows two runs of the program in Listing 5-6. (Figure 5-9 illustrates
the program’s overall idea.) First, the user types a number, like the number 2.
Then execution of the program reaches the top of the switch statement. The com-
puter checks the value of the verse variable. When the computer determines that
the verse variable’s value is 2, the computer checks each case of the switch state-
ment. The value 2 doesn’t match the topmost case, so the computer proceeds to
the middle of the three cases. The value posted for the middle case (the number 2)
matches the value of the verse variable, so the computer executes the statements
that come immediately after case 2. These two statements are

out.println("That's because he is a pain.");

break;

The first of the two statements displays the line That’s because he is a pain.
on the screen. The second statement is called a break statement. (What a sur-
prise!) When the computer encounters a break statement, the computer jumps
out of whatever switch statement it’s in. So, in Listing 5-6, the computer skips
right past the case that would display ’Cause this is the last refrain. In fact,
the computer jumps out of the entire switch statement and goes straight to the
statement just after the end of the switch statement. The computer displays
Ohhhhhhhh ... because that’s what the statement after the switch statement
tells the computer to do.

FIGURE 5-8:
Running the

code of
Listing 5-6
two times.

134 PART 2 Writing Your Own Java Programs

FIGURE 5-9:
The big fork in

the code of
Listing 5-6.

If the pesky user asks for verse 6, the computer bypasses cases 1, 2, and 3. The
computer goes straight to the default. In the default, the computer displays
No such verse. Please try again, and then breaks out of the switch state-
ment. After the computer is out of the switch statement, the computer displays
Ohhhhhhhh ...

You don’t really need to put a break at the very end of a switch statement. In
 Listing 5-6, the last break (the break that’s part of the default) is just for the sake
of overall tidiness.

To break or not to break
In every Java programmer’s life, a time comes when he or she forgets to use break
statements. At first, the resulting output is confusing, but then the programmer
remembers fall-through. The term fall-through describes what happens when you
end a case without a break statement. What happens is that execution of the code
falls right through to the next case in line. Execution keeps falling through until
you eventually reach a break statement or the end of the entire switch
statement.

Usually, when you’re using a switch statement, you don’t want fall-through, so
you pepper break statements throughout the switch statements. But, occasion-
ally, fall-through is just the thing you need. Take, for instance, the “Al’s All Wet”
song. (The classy lyrics are shown in the sidebar bearing the song’s name.) Each

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 135

verse of “Al’s All Wet” adds new lines in addition to the lines from previous verses.
This situation (accumulating lines from one verse to another) cries out for a
switch statement with fall-through. Listing 5-7 demonstrates the idea.

LISTING 5-7: A switch Statement with Fall-Through

import static java.lang.System.out;

import java.util.Scanner;

public class FallingForYou {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Which verse? ");

 int verse = keyboard.nextInt();

 switch (verse) {

 case 3:

 out.print("Last refrain, ");

 out.println("last refrain,");

 case 2:

 out.print("He's a pain, ");

 out.println("he's a pain,");

 case 1:

 out.print("Has no brain, ");

 out.println("has no brain,");

 }

 out.println("In the rain, in the rain.");

 out.println("Ohhhhhhhh...");

 out.println();

 keyboard.close();

 }

}

Figure 5-10 shows several runs of the program in Listing 5-7. Because the switch
has no break statements in it, fall-through happens all over the place. For
instance, when the user selects verse 2, the computer executes the two statements
in case 2:

out.print("He's a pain, ");

out.println("he's a pain,");

136 PART 2 Writing Your Own Java Programs

Then the computer marches right on to execute the two statements in case 1:

out.print("Has no brain, ");

out.println("has no brain,");

That’s good because the song’s second verse has all these lines in it.

Notice what happens when the user asks for verse 6. The switch statement in
Listing 5-7 has no case 6 and no default, so none of the actions inside the switch
statement is executed. Even so, with statements that print In the rain, in the
rain and Ohhhhhhhh ... right after the switch statement, the computer displays
something when the user asks for verse 6.

Strings in a switch statement
In Listings 5-6 and 5-7, shown earlier, the variable verse (an int value) steers
the switch statement to one case or another. An int value inside a switch state-
ment works in any version of Java, old or new. (For that matter, char values and a
few other kinds of values have worked in Java’s switch statements ever since Java
was a brand-new language.)

FIGURE 5-10:
Running

the code of
Listing 5-7

four times.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 137

Starting with Java 7, you can set it up so that the case to be executed in a switch
statement depends on the value of a particular string. Listing 5-8 illustrates the
use of strings in switch statements. Figure 5-11 shows a run of the code in
Listing 5-8.

LISTING 5-8: A switch Statement with a String

import static java.lang.System.out;

import java.util.Scanner;

public class SwitchIt7 {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Which verse (one, two or three)? ");

 String verse = keyboard.next();

 switch (verse) {

 case "one":

 out.println("That's because he has no brain.");

 break;

 case "two":

 out.println("That's because he is a pain.");

 break;

 case "three":

 out.println("'Cause this is the last refrain.");

 break;

 default:

 out.println("No such verse. Please try again.");

 break;

 }

 out.println("Ohhhhhhhh... .");

 keyboard.close();

 }

}

FIGURE 5-11:
Running the code

of Listing 5-8.

138 PART 2 Writing Your Own Java Programs

Get some practice with if statements and switch statements!

 » Write a program that inputs the name of a month and outputs the number of
days in that month. In this first version of the program, assume that February
always has 28 days.

 » Make your code even better! Have the user input a month name, but also
have the user input yes or no in response to the question Is it a leap
year?

CHAPTER 6 Controlling Program Flow with Loops 139

IN THIS CHAPTER

 » Using basic looping

 » Counting as you loop

 » Repeating relentlessly (until the user
gives you a clear answer)

Controlling Program
Flow with Loops

In 1966, the company that brings you Head & Shoulders shampoo made history.
On the back of the bottle, the directions for using the shampoo read, “LATHER-
RINSE-REPEAT.” Never before had a complete set of directions (for doing any-

thing, let alone shampooing your hair) been summarized so succinctly. People in
the direction-writing business hailed this as a monumental achievement.
Directions like these stood in stark contrast to others of the time. (For instance,
the first sentence on a can of bug spray read, “Turn this can so that it points away
from your face.” Duh!)

Aside from their brevity, the thing that made the Head & Shoulders directions so
cool was that, with three simple words, it managed to capture a notion that’s at
the heart of all instruction-giving — the notion of repetition. That last word,
REPEAT, took an otherwise bland instructional drone and turned it into a sophis-
ticated recipe for action.

The fundamental idea is that when you’re following directions, you don’t just fol-
low one instruction after another. Instead, you take turns in the road. You make
decisions (“If HAIR IS DRY, then USE CONDITIONER”) and you go into loops
(“LATHER-RINSE, and then LATHER-RINSE again.”). In computer program-
ming, you use decision-making and looping all the time. This chapter explores
looping in Java.

Chapter 6

140 PART 2 Writing Your Own Java Programs

Repeating Instructions Over and Over
Again (Java while Statements)

Here’s a guessing game for you. The computer generates a random number from
1 to 10. The computer asks you to guess the number. If you guess incorrectly, the
game continues. As soon as you guess correctly, the game is over. Listing 6-1
shows the program to play the game, and Figure 6-1 shows a round of play.

LISTING 6-1: A Repeating Guessing Game

import static java.lang.System.out;

import java.util.Scanner;

import java.util.Random;

public class GuessAgain {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 int numGuesses = 0;

 int randomNumber = new Random().nextInt(10) + 1;

 out.println(" ************ ");

 out.println("Welcome to the Guessing Game");

 out.println(" ************ ");

 out.println();

 out.print("Enter an int from 1 to 10: ");

 int inputNumber = keyboard.nextInt();

 numGuesses++;

 while (inputNumber != randomNumber) {

 out.println();

 out.println("Try again...");

 out.print("Enter an int from 1 to 10: ");

 inputNumber = keyboard.nextInt();

 numGuesses++;
 }

CHAPTER 6 Controlling Program Flow with Loops 141

 out.print("You win after ");

 out.println(numGuesses + " guesses.");

 keyboard.close();

 }

}

In Figure 6-1, the user makes four guesses. Each time around, the computer
checks to see whether the guess is correct. An incorrect guess generates a request
to try again. For a correct guess, the user gets a rousing You win, along with a tally
of the number of guesses he or she made. The computer repeats several state-
ments, checking each time through to see whether the user’s guess is the same as
a certain randomly generated number. Each time the user makes a guess, the
computer adds 1 to its tally of guesses. When the user makes the correct guess, the
computer displays that tally. Figure 6-2 illustrates the flow of action.

When you look over Listing 6-1, you see the code that does all this work. At the
core of the code is a thing called a while statement (also known as a while loop).
Rephrased in English, the while statement says:

while the inputNumber is not equal to the randomNumber

keep doing all the stuff in curly braces: {

}

The stuff in curly braces (the stuff that repeats) is the code that prints Try again
and Enter an int ..., gets a value from the keyboard, and adds 1 to the count of
the user’s guesses.

FIGURE 6-1:
Play until
you drop.

142 PART 2 Writing Your Own Java Programs

When you’re dealing with counters, like numGuesses in Listing 6-1, you may easily
become confused and be off by 1 in either direction. You can avoid this headache
by making sure that the ++ statements stay close to the statements whose events
you’re counting. For example, in Listing 6-1, the variable numGuesses starts with
a value of 0. That’s because, when the program starts running, the user hasn’t
made any guesses. Later in the program, right after each call to keyboard.
nextInt, is a numGuesses++ statement. That’s how you do it — you increment the
counter as soon as the user enters another guess.

The statements in curly braces are repeated as long as inputNumber != random
Number is true. Each repetition of the statements in the loop is called an iteration
of the loop. In Figure 6-1, the loop undergoes three iterations. (If you don’t believe
that Figure 6-1 has exactly three iterations, count the number of Try again print-
ings in the program’s output. A Try again appears for each incorrect guess.)

When, at long last, the user enters the correct guess, the computer goes back to
the top of the while statement, checks the condition in parentheses, and finds
itself in double double-negative land. The not equal (!=) relationship between
inputNumber and randomNumber no longer holds. In other words, the while
 statement’s condition, inputNumber != randomNumber, is false. Because the
while statement’s condition is false, the computer jumps past the while loop and
goes on to the statements just below the while loop. In these two statements, the
computer prints You win after four guesses.

FIGURE 6-2:
Around and

around you go.

CHAPTER 6 Controlling Program Flow with Loops 143

With code of the kind shown in Listing 6-1, the computer never jumps out in mid-
loop. When the computer finds that inputNumber isn’t equal to randomNumber, the
computer marches on and executes all five statements inside the loop’s curly braces.
The computer performs the test again (to see whether inputNumber is still not
equal to randomNumber) only after it fully executes all five statements in the loop.

I have two things for you to try:

 » Modify the program in Listing 6-1 so that the randomly generated number is a
number from 1 and 100. To make life bearable for the game player, have the
program give a hint whenever the player guesses incorrectly. Hints such as
Try a higher number or Try a lower number are very helpful.

 » Write a program in which the user types int values, one after another. The
program stops looping when the user types a number that isn’t positive (for
example, the number 0 or the number –17). After all the looping, the program
displays the largest number that the user typed. For example, if the user types
the numbers

7

25

3

9

0

the program displays the number 25.

Repeating a Certain Number of Times
(Java for Statements)

“Write I will not talk in class on the blackboard 100 times.”

What your teacher really meant was this:

Set the count to 0.

As long as the count is less than 100,

 Write 'I will not talk in class' on the blackboard,

 Add 1 to the count.

Fortunately, you didn’t know about loops and counters at the time. If you pointed
out all this stuff to your teacher, you’d have gotten into a lot more trouble than
you were already in.

144 PART 2 Writing Your Own Java Programs

One way or another, life is filled with examples of counting loops. And computer
programming mirrors life — or is it the other way around? When you tell a com-
puter what to do, you’re often telling the computer to print three lines, process
ten accounts, dial a million phone numbers, or whatever. Because counting loops
is so common in programming, the people who create programming languages
have developed statements just for loops of this kind. In Java, the statement that
repeats something a certain number of times is called a for statement. Listings 6-2
and 6-3 illustrate the use of the for statement. Listing 6-2 has a rock-bottom
simple example, and Listing 6-3 has a more exotic example. Take your pick.

LISTING 6-2: The World’s Most Boring for Loop

import static java.lang.System.out;

public class Yawn {

 public static void main(String args[]) {

 for (int count = 1; count <= 10; count++) {

 out.print("The value of count is ");

 out.print(count);

 out.println(".");

 }

 out.println("Done!");

 }

}

Figure 6-3 shows you what you get when you run the program of Listing 6-2. (You
get exactly what you deserve.) The for statement in Listing 6-2 starts by setting
the count variable to 1. Then the statement tests to make sure that count is less
than or equal to 10 (which it certainly is). Then the for statement dives ahead and
executes the printing statements between the curly braces. (At this early stage of
the game, the computer prints The value of count is 1.) Finally, the for state-
ment does that last thing inside its parentheses — it adds 1 to the value of count.

With count now equal to 2, the for statement checks again to make sure that
count is less than or equal to 10. (Yes, 2 is smaller than 10.) Because the test turns
out okay, the for statement marches back into the curly braced statements and
prints The value of count is 2 on the screen. Finally, the for statement does
that last thing inside its parentheses — it adds 1 to the value of count, increasing
the value of count to 3.

CHAPTER 6 Controlling Program Flow with Loops 145

And so on. This whole thing repeats until, after ten iterations, the value of count
finally reaches 11. When this happens, the check for count being less than or equal
to ten fails, and the loop’s execution ends. The computer jumps to whatever state-
ment comes immediately after the for statement. In Listing 6-2, the computer
prints Done! as its output. Figure 6-4 illustrates the whole process.

The anatomy of a for statement
After the word for, you always put three things in parentheses. The first of these
three is called an initialization, the second is an expression, and the third is an
update:

for (initialization ; expression ; update)

FIGURE 6-3:
Counting to ten.

FIGURE 6-4:
The action of the

for loop in
Listing 6-2.

146 PART 2 Writing Your Own Java Programs

Each of the three items in parentheses plays its own distinct role:

 » The initialization is executed once, when the run of your program first
reaches the for statement.

 » The expression is evaluated several times (before each iteration).

 » The update is also evaluated several times (at the end of each iteration).

If it helps, think of the loop as though its text is shifted all around:

int count = 1

for count <= 10 {

 out.print("The value of count is ");

 out.print(count);

 out.println(".");

 count++;
}

You can’t write a real for statement this way. Even so, this is the order in which
the parts of the statement are executed.

If you declare a variable in the initialization of a for loop, you can’t use that vari-
able outside the loop. For instance, in Listing 6-2, you get an error message if you
try putting out.println(count) after the end of the loop.

Anything that can be done with a for loop can also be done with a while loop.
Choosing to use a for loop is a matter of style and convenience, not necessity.

Would you like some practice? Try these experiments and challenges:

 » A for statement’s initialization may have several parts. A for statement’s
update may also have several parts. To find out how, enter the following lines
in Java’s JShell, or add the lines to a small Java program:

import static java.lang.System.out

for (int i = 0, j = 10; i < j; i++, j--) {out.println(i + " " + j);}

 » What’s the output of the following code?

int total = 0;

for (int i = 0; i < 10; i++) {
 total += i;
}

System.out.println(total);

CHAPTER 6 Controlling Program Flow with Loops 147

In this code, the variable total is called an accumulator because it accumu-
lates (adds up) a bunch of values inside the loop.

 » In mathematics, the exclamation point (!) means factorial — the number you get
when you multiply all the positive int values up to and including a certain number.
For example, 3! is 1 × 2 × 3, which is 6. And 5! is 1 × 2 × 3 × 4 × 5, which is 120.

Write a program in which the user types a positive int value (call it n), and
Java displays the value of n! as its output.

 » Without running the following code, try to predict what the code’s output will be:

for (int row = 0; row < 5; row++) {
 for (int column = 0; column < 5; column++) {
 System.out.print("*");

 }

 System.out.println();

}

After making your prediction, run the code to find out whether your predic-
tion is correct.

 » The code in this experiment is a slight variation on the code in the previous
experiment. First, try to predict what the code will output. Then run the code
to find out whether your prediction is correct:

for (int row = 0; row < 5; row++) {
 for (int column = 0; column <= row; column++) {
 System.out.print("*");

 }

 System.out.println();

}

 » Write a program that uses loops to display three copies of the following
pattern, one after another:

*

**

The world premiere of “Al’s All Wet”
Listing 6-2 is very nice, but the program in that listing doesn’t do anything inter-
esting. For a more eye-catching example, see Listing 6-3. In Listing 6-3, I make

148 PART 2 Writing Your Own Java Programs

good on a promise I make in Chapter 5. The program in Listing 6-3 prints all the
lyrics of the hit single “Al’s All Wet.” (You can find the lyrics in Chapter 5.)

LISTING 6-3: The Unabridged “Al’s All Wet” Song

import static java.lang.System.out;

public class AlsAllWet {

 public static void main(String args[]) {

 for (int verse = 1; verse <= 3; verse++) {
 out.print("Al's all wet. ");

 out.println("Oh, why is Al all wet? Oh,");

 out.print("Al's all wet 'cause ");

 out.println("he's standing in the rain.");

 out.println("Why is Al out in the rain?");

 switch (verse) {

 case 1:

 out.println("That's because he has no brain.");

 break;

 case 2:

 out.println("That's because he is a pain.");

 break;

 case 3:

 out.println("'Cause this is the last refrain.");

 break;

 }

 switch (verse) {

 case 3:

 out.println("Last refrain, last refrain,");

 case 2:

 out.println("He's a pain, he's a pain,");

 case 1:

 out.println("Has no brain, has no brain,");

 }

 out.println("In the rain, in the rain.");

 out.println("Ohhhhhhhh...");

 out.println();

 }

CHAPTER 6 Controlling Program Flow with Loops 149

 out.print("Al's all wet. ");

 out.println("Oh, why is Al all wet? Oh,");

 out.print("Al's all wet 'cause ");

 out.println("he's standing in the rain.");

 }

}

Listing 6-3 is nice because it combines many of the ideas from Chapters 5 and 6.
In Listing 6-3, two switch statements are nested inside a for loop. One of the
switch statements uses break statements; the other switch statement uses fall-
through. As the value of the for loop’s counter variable (verse) goes from 1 to 2
and then to 3, all the cases in the switch statements are executed. When the pro-
gram is near the end of its run and execution has dropped out of the for loop, the
program’s last four statements print the song’s final verse.

When I boldly declare that a for statement is for counting, I’m stretching the
truth just a bit. Java’s for statement is very versatile. You can use a for statement
in situations that have nothing to do with counting. For instance, a statement
with no update part, such as for (i = 0; i < 10;), just keeps on going. The
looping ends when some action inside the loop assigns a big number to the vari-
able i. You can even create a for statement with nothing inside the parentheses.
The loop for (; ;) runs forever, which is good if the loop controls a serious
piece of machinery. Usually, when you write a for statement, you’re counting how
many times to repeat something. But, in truth, you can do just about any kind of
repetition with a for statement.

Look! I have some experiments for you to try!

 » Listing 6-3 uses break statements to jump out of a switch. But a break
statement can also play a role inside a loop. To find out how it works, run a
program containing the following code:

Scanner keyboard = new Scanner(System.in);

while (true) {

 System.out.print("Enter an int value: ");

 int i = keyboard.nextInt();

 if (i == 0) {

 break;

 }

 System.out.println(i);

}

System.out.println("Done!");

keyboard.close();

150 PART 2 Writing Your Own Java Programs

The loop’s condition is always true. It’s like starting a loop with the line

while (1 + 1 == 2)

If it weren’t for the break statement, the loop would run forever. Fortunately,
when you execute the break statement, Java jumps to the code immediately
after the loop.

 » In addition to its break statement, Java has a continue statement. When you
execute a continue statement, Java skips to the end of its loop and begins the
next iteration of that loop. To see it in action, run a program containing the
following code:

Scanner keyboard = new Scanner(System.in);

while (true) {

 System.out.print("Enter an int value: ");

 int i = keyboard.nextInt();

 if (i > 10) {

 continue;

 }

 if (i == 0) {

 break;

 }

 System.out.println(i);

}

System.out.println("Done!");

keyboard.close();

Repeating until You Get What You
Want (Java do Statements)

Fools rush in where angels fear to tread.
—ALEXANDER POPE

Today, I want to be young and foolish (or, at the very least, foolish). Look back at
Figure 6-2 and notice how Java’s while loop works. When execution enters a
while loop, the computer checks to make sure that the loop’s condition is true. If
the condition isn’t true, the statements inside the loop are never executed — not

CHAPTER 6 Controlling Program Flow with Loops 151

even once. In fact, you can easily cook up a while loop whose statements are never
executed (although I can’t think of a reason why you would ever want to do it):

int twoPlusTwo = 2 + 2;

while (twoPlusTwo == 5) {

 out.println("Are you kidding?");

 out.println("2 + 2 doesn't equal 5");
 out.print("Everyone knows that");

 out.println(" 2 + 2 equals 3");
}

In spite of this silly twoPlusTwo example, the while statement turns out to be the
most versatile of Java’s looping constructs. In particular, the while loop is good
for situations in which you must look before you leap. For example, “While money
is in my account, write a mortgage check every month.” When you first encounter
this statement, if your account has a zero balance, you don’t want to write a mort-
gage check — not even one check.

But at times (not many), you want to leap before you look. Take, for instance, the
situation in which you’re asking the user for a response. Maybe the user’s response
makes sense, but maybe it doesn’t. If it doesn’t, you want to ask again. Maybe the
user’s finger slipped, or perhaps the user didn’t understand the question.

Figure 6-5 shows some runs of a program to delete a file. Before deleting the file,
the program asks the user whether making the deletion is okay. If the user answers
y or n, the program proceeds according to the user’s wishes. But if the user enters
any other character (any digit, uppercase letter, punctuation symbol, or whatever),
the program asks the user for another response.

To write this program, you need a loop — a loop that repeatedly asks the user
whether the file should be deleted. The loop keeps asking until the user gives a
meaningful response. Now, the thing to notice is that the loop doesn’t need to
check anything before asking the user the first time. Indeed, before the user gives

FIGURE 6-5:
Two runs of
the code in
Listing 6-4.

152 PART 2 Writing Your Own Java Programs

the first response, the loop has nothing to check. The loop doesn’t start with “as
long as such-and-such is true, then get a response from the user.” Instead, the
loop just leaps ahead, gets a response from the user, and then checks the response
to see whether it makes sense.

That’s why the program in Listing 6-4 has a do loop (also known as a do . . . while
loop). With a do loop, the program jumps right in, takes action, and then checks a
condition to see whether the result of the action makes sense. If the result makes
sense, execution of the loop is done. If not, the program goes back to the top of the
loop for another go-round.

LISTING 6-4: To Delete or Not to Delete

import java.io.File;

import static java.lang.System.out;

import java.util.Scanner;

public class DeleteEvidence {

 public static void main(String args[]) {

 File evidence = new File("cookedBooks.txt");

 Scanner keyboard = new Scanner(System.in);

 char reply;

 do {

 out.print("Delete evidence? (y/n) ");

 reply = keyboard.findWithinHorizon(".",0).charAt(0);

 } while (reply != 'y' && reply != 'n');

 if (reply == 'y') {

 out.println("Okay, here goes...");

 evidence.delete();

 out.println("The evidence has been deleted.");

 } else {

 out.println("Sorry, buddy. Just asking.");

 }

 keyboard.close();

 }

}

Figure 6-5 shows two runs of the code in Listing 6-4. The program accepts low-
ercase letters y and n, but not the uppercase letters Y and N. To make the program
accept uppercase letters, change the conditions in the code as follows:

CHAPTER 6 Controlling Program Flow with Loops 153

do {

 out.print("Delete evidence? (y/n) ");

 reply = keyboard.findWithinHorizon(".", 0).charAt(0);

} while (reply != 'y' && reply != 'Y' && reply != 'n' && reply!='N');

if (reply == 'y' || reply == 'Y') {

Figure 6-6 shows the flow of control in the loop of Listing 6-4. With a do loop, the
situation in the twoPlusTwo program (shown at the beginning of this section) can
never happen. Because the do loop carries out its first action without testing a
condition, every do loop is guaranteed to perform at least one iteration.

The location of Listing 6-4’s cookedBooks.txt file on your computer’s hard drive
depends on several factors. If you create a cookedBooks.txt file in the wrong
directory, the code in Listing 6-4 cannot delete your file. (More precisely, if
cookedBooks.txt is in the wrong directory on your hard drive, the code in
Listing 6-4 can’t find the cookedBooks.txt file in preparation for deleting the
file.) In most settings, you start testing Listing 6-4 by creating a project within
your IDE. The new project lives in a folder on your hard drive, and the cooked
Books.txt file belongs directly inside that folder. For example, I have a project
named 06-04. That project lives on my hard drive in a folder named 06-04. Inside
that folder, I have a file named cookedBooks.txt. If you have trouble with this,
add the following code to Listing 6-4 immediately after the new File statement:

try {

 out.println("Looking for " + evidence.getCanonicalPath());
} catch (java.io.IOException e) {

 e.printStackTrace();

}

FIGURE 6-6:
Here we go loop,

do loop.

154 PART 2 Writing Your Own Java Programs

When you run the code, Java tells you where, on your hard drive, the cooked-
Books.txt file should be.

For more information about files and their folders, see Chapter 8.

Reading a single character
Over in Listing 5-3 from Chapter 5, the user types a word on the keyboard.
The keyboard.next method grabs the word and places the word into a String
variable named password. Everything works nicely because a String variable
can store many characters at once, and the next method can read many charac-
ters at once.

But in Listing 6-4, you’re not interested in reading several characters. You expect
the user to type one letter — either y or n. So you don’t create a String variable
to store the user’s response. Instead, you create a char variable — a variable that
stores just one symbol at a time.

The Java API doesn’t have a nextChar method. To read something suitable for
storage in a char variable, you have to improvise. In Listing 6-4, the improvisa-
tion looks like this:

keyboard.findWithinHorizon(".", 0).charAt(0)

You can use this code exactly as it appears in Listing 6-4 whenever you want to
read a single character.

A String variable can contain many characters or just one. But a String variable
that contains only one character isn’t the same as a char variable. No matter what
you put in a String variable, String variables and char variables have to be
treated differently.

File handling in Java
In Listing 6-4, the actual file-handling statements deserve some attention. These
statements involve the use of classes, objects, and methods. Many of the meaty
details about these things are in other chapters, like Chapters 7 and 9. Even so, I
can’t do any harm by touching on some highlights right here.

So, you can find a class in the Java language API named java.io.File. The
statement

File evidence = new File("cookedBooks.txt");

CHAPTER 6 Controlling Program Flow with Loops 155

creates a new object in the computer’s memory. This object, formed from the
java.io.File class, describes everything that the program needs to know about
the disk file cookedBooks.txt. From this point on in Listing 6-4, the variable
evidence refers to the disk file cookedBooks.txt.

The evidence object, as an instance of the java.io.File class, has a delete
method. (What can I say? It’s in the API documentation.) When you call evidence.
delete, the computer gets rid of the file for you.

Of course, you can’t get rid of something that doesn’t already exist. When the
computer executes

File evidence = new File("cookedBooks.txt");

Java doesn’t check to make sure that you have a file named cookedBooks.txt. To
force Java to do the checking, you have a few options. The simplest is to call the
exists method. When you call evidence.exists(), the method looks in the
folder where Java expects to find cookedBooks.txt. The call evidence.exists()
returns true if Java finds cookedBooks.txt inside that folder. Otherwise, the call
evidence.exists() returns false. Here’s a souped-up version of Listing 6-4,
with a call to exists included in the code:

import java.io.File;

import static java.lang.System.out;

import java.util.Scanner;

public class DeleteEvidence {

 public static void main(String args[]) {

 File evidence = new File("cookedBooks.txt");

 if (evidence.exists()) {

 Scanner keyboard = new Scanner(System.in);

 char reply;

 do {

 out.print("Delete evidence? (y/n) ");

 reply =

 keyboard.findWithinHorizon(".", 0).charAt(0);

 } while (reply != 'y' && reply != 'n');

 if (reply == 'y') {

 out.println("Okay, here goes...");

 evidence.delete();

 out.println("The evidence has been deleted.");

156 PART 2 Writing Your Own Java Programs

 } else {

 out.println("Sorry, buddy. Just asking.");

 }

 keyboard.close();

 }

 }

}

Variable declarations and blocks
A bunch of statements surrounded by curly braces forms a block. If you declare a
variable inside a block, you generally can’t use that variable outside the block. For
instance, in Listing 6-4, you get an error message if you make the following
change:

do {

 out.print("Delete evidence? (y/n) ");

 char reply = keyboard.findWithinHorizon(".", 0).charAt(0);

} while (reply != 'y' && reply != 'n');

if (reply == 'y')

With the declaration char reply inside the loop’s curly braces, no use of the name
reply makes sense anywhere outside the braces. When you try to compile this
code, you get three error messages — two for the reply words in while (reply !=
'y' && reply != 'n') and a third for the if statement’s reply.

So in Listing 6-4, your hands are tied. The program’s first real use of the reply
variable is inside the loop. But to make that variable available after the loop, you
have to declare reply before the loop. In this situation, you’re best off declaring
the reply variable without initializing the variable. Very interesting!

To read more about variable initializations, see Chapter 4. To find out more about
blocks, see Chapter 5.

All versions of Java have the three kinds of loops described in this chapter (while
loops, for loops, and do ... while loops). But newer Java versions (namely,
Java 5 and beyond) have yet another kind of loop, called an enhanced for loop. For
a look at Java’s enhanced for loop, see Chapter 11.

CHAPTER 6 Controlling Program Flow with Loops 157

Copy the code from Listing 6-1, but with the following change:

 out.print("Enter an int from 1 to 10: ");

 int inputNumber = keyboard.nextInt();

 numGuesses++;

 do {

 out.println();

 out.println("Try again...");

 out.print("Enter an int from 1 to 10: ");

 inputNumber = keyboard.nextInt();

 numGuesses++;
 } while (inputNumber != randomNumber);

 out.print("You win after ");

 out.println(numGuesses + " guesses.");

The code in Listing 6-1 has a while loop, but this modified code has a do loop.
Does this modified code work correctly? Why, or why not?

3Working with
the Big Picture:
Object-Oriented
Programming

IN THIS PART . . .

Find out what classes and objects are (without bending
your brain out of shape).

Find out how object-oriented programming helps you
reuse existing code (saving you time and money).

Be the emperor of your own virtual world by constructing
brand-new objects.

CHAPTER 7 Thinking in Terms of Classes and Objects 161

IN THIS CHAPTER

 » Thinking like a real object-oriented
programmer

 » Passing values to and from methods

 » Hiding details in your object-oriented
code

Thinking in Terms of
Classes and Objects

As a computer book author, I’ve been told this over and over again: I
shouldn’t expect people to read sections and chapters in their logical order.
People jump around, picking what they need and skipping what they don’t

feel like reading. With that in mind, I realize that you may have skipped Chapter 1.
If that’s the case, please don’t feel guilty. You can compensate in just 60 seconds
by reading the following information, culled from Chapter 1:

Because Java is an object-oriented programming language, your primary goal is to
describe classes and objects. A class is the idea behind a certain kind of thing. An object
is a concrete instance of a class. The programmer defines a class, and from the class
definition, Java makes individual objects.

Of course, you can certainly choose to skip over the 60-second summary para-
graph. If that’s the case, you may want to recoup some of your losses. You can do
that by reading the following two-word summary of Chapter 1:

Classes; objects.

Chapter 7

162 PART 3 Working with the Big Picture: Object-Oriented Programming

Defining a Class (What It Means
to Be an Account)

What distinguishes one bank account from another? If you ask a banker this
 question, you hear a long sales pitch. The banker describes interest rates, fees,
penalties — the whole routine. Fortunately for you, I’m not interested in all that.
Instead, I want to know how my account is different from your account. After all,
my account is named Barry Burd, trading as Burd Brain Consulting, and your account
is named Jane Q. Reader, trading as Budding Java Expert. My account has $24.02 in it.
How about yours?

When you come right down to it, the differences between one account and another
can be summarized as values of variables. Maybe there’s a variable named
 balance. For me, the value of balance is 24.02. For you, the value of balance is
55.63. The question is, when writing a computer program to deal with accounts,
how do I separate my balance variable from your balance variable?

The answer is to create two separate objects. Let one balance variable live inside
one of the objects and let the other balance variable live inside the other object.
While you’re at it, put a name variable and an address variable in each of the
objects. And there you have it: two objects, and each object represents an account.
More precisely, each object is an instance of the Account class. (See Figure 7-1.)

So far, so good. However, you still haven’t solved the original problem. In your
computer program, how do you refer to my balance variable, as opposed to your
balance variable? Well, you have two objects sitting around, so maybe you have
variables to refer to these two objects. Create one variable named myAccount and
another variable named yourAccount. The myAccount variable refers to my object
(my instance of the Account class) with all the stuff that’s inside it. To refer to my
balance, write

myAccount.balance

FIGURE 7-1:
Two objects.

CHAPTER 7 Thinking in Terms of Classes and Objects 163

To refer to my name, write

myAccount.name

Then yourAccount.balance refers to the value in your object’s balance variable,
and yourAccount.name refers to the value of your object’s name variable. To tell
Java how much I have in my account, you can write

myAccount.balance = 24.02;

To display your name on the screen, you can write

out.println(yourAccount.name);

These ideas come together in Listings 7-1 and 7-2. Here’s Listing 7-1:

LISTING 7-1: What It Means to Be an Account

public class Account {

 String name;

 String address;

 double balance;

}

The Account class in Listing 7-1 defines what it means to be an Account. In par-
ticular, Listing 7-1 tells you that each of the Account class’s instances has three
variables: name, address, and balance. This is consistent with the information in
Figure 7-1. Java programmers have a special name for variables of this kind
 (variables that belong to instances of classes). Each of these variables — name,
address, and balance — is called a field.

A variable declared inside a class but not inside any particular method is a field. In
Listing 7-1, the variables name, address, and balance are fields. Another name for
a field is an instance variable.

If you’ve been grappling with the material in Chapters 4 through 6, the code for
class Account (refer to Listing 7-1) may come as a big shock to you. Can you really
define a complete Java class with only four lines of code (give or take a curly brace)?
You certainly can. A class is a grouping of existing things. In the Account class of
Listing 7-1, those existing things are two String values and a double value.

164 PART 3 Working with the Big Picture: Object-Oriented Programming

The field declarations in Listing 7-1 have default access, which means that I didn’t
add a word before the type name String. The alternatives to default access are
public, protected, and private access:

public String name;

protected String address;

private double balance;

Professional programmers shun the use of default access because default access
doesn’t shield a field from accidental misuse. But in my experience, you learn best
when you learn about the simplest stuff first, and in Java, default access is the
simplest stuff. In this book, I delay the discussion of private access until this
chapter’s section “Hiding Details with Accessor Methods.” And I delay the discus-
sion of protected access until Chapter 14. As you read this chapter’s examples,
please keep in mind that default access isn’t the best thing to use in a Java pro-
gram. And, if a professional programmer asks you where you learned to use
default access, please lie and blame someone else’s book.

Declaring variables and creating objects
A young fellow approaches me while I’m walking down the street. He tells me to
print “You’ll love Java!” so I print those words. If you must know, I print them
with chalk on the sidewalk. But where I print the words doesn’t matter. What
matters is that some guy issues instructions, and I follow the instructions.

Later that day, an elderly woman sits next to me on a park bench. She says, “An
account has a name, an address, and a balance.” And I say, “That’s fine, but what
do you want me to do about it?” In response she just stares at me, so I don’t do
anything about her account pronouncement. I just sit there, she sits there, and we
both do absolutely nothing.

Listing 7-1, shown earlier, is like the elderly woman. This listing defines what it
means to be an Account, but the listing doesn’t tell me to do anything with my
account, or with anyone else’s account. In order to do something, I need a second
piece of code. I need another class — a class that contains a main method. Fortu-
nately, while the woman and I sit quietly on the park bench, a young child comes
by with Listing 7-2.

CHAPTER 7 Thinking in Terms of Classes and Objects 165

LISTING 7-2: Dealing with Account Objects

import static java.lang.System.out;

public class UseAccount {

 public static void main(String args[]) {

 Account myAccount;

 Account yourAccount;

 myAccount = new Account();

 yourAccount = new Account();

 myAccount.name = "Barry Burd";

 myAccount.address = "222 Cyberspace Lane";

 myAccount.balance = 24.02;

 yourAccount.name = "Jane Q. Public";

 yourAccount.address = "111 Consumer Street";

 yourAccount.balance = 55.63;

 out.print(myAccount.name);

 out.print(" (");

 out.print(myAccount.address);

 out.print(") has $");

 out.print(myAccount.balance);

 out.println();

 out.print(yourAccount.name);

 out.print(" (");

 out.print(yourAccount.address);

 out.print(") has $");

 out.print(yourAccount.balance);

 }

}

Taken together, the two classes — Account and UseAccount — form one complete
program. The code in Listing 7-2 defines the UseAccount class, and the UseAccount
class has a main method. This main method has variables of its own — yourAccount
and myAccount.

In a way, the first two lines inside the main method of Listing 7-2 are misleading.
Some people read Account yourAccount as if it’s supposed to mean, “yourAccount is
an Account,” or “The variable yourAccount refers to an instance of the Account
class.” That’s not really what this first line means. Instead, the line Account
yourAccount means, “If and when I make the variable yourAccount refer to something,
that something will be an instance of the Account class.” So, what’s the difference?

166 PART 3 Working with the Big Picture: Object-Oriented Programming

The difference is that simply declaring Account yourAccount doesn’t make the
yourAccount variable refer to an object. All the declaration does is reserve the
variable name yourAccount so that the name can eventually refer to an instance of
the Account class. The creation of an actual object doesn’t come until later in the
code, when Java executes new Account().

Technically, when Java executes new Account(), you’re creating an object by call-
ing the Account class’s constructor. I have more to say about that in Chapter 9.

When Java executes the assignment yourAccount = new Account(), Java creates
a new object (a new instance of the Account class) and makes the variable
yourAccount refer to that new object. (The equal sign makes the variable refer to
the new object.) Figure 7-2 illustrates the situation.

To test the claim that I made in the last few paragraphs, I added an extra line to
the code of Listing 7-2. I tried to print yourAccount.name after declaring yourAc-
count but before calling new Account():

Account myAccount;

 Account yourAccount;

 out.println(yourAccount.name);

 myAccount = new Account();

 yourAccount = new Account();

FIGURE 7-2:
Before and after
a constructor is

called.

CHAPTER 7 Thinking in Terms of Classes and Objects 167

When I tried to compile the new code, I got this error message: variable
yourAccount might not have been initialized. That settles it. Before you do
new Account(), you can’t print the name variable of an object because an object
doesn’t exist.

When a variable has a reference type, simply declaring the variable isn’t enough.
You don’t get an object until you call a constructor and use the keyword new.

For information about reference types, see Chapter 4.

Initializing a variable
In Chapter 4, I announce that you can initialize a primitive type variable as part of
the variable’s declaration.

int weightOfAPerson = 150;

You can do the same thing with reference type variables, such as myAccount and
yourAccount in Listing 7-2. You can combine the first four lines in the listing’s
main method into just two lines, like this:

Account myAccount = new Account();

Account yourAccount = new Account();

If you combine lines this way, you automatically avoid the variable might not
have been initialized error that I describe in the preceding section. Sometimes
you find a situation in which you can’t initialize a variable. But when you can ini-
tialize, it’s usually a plus.

Using an object’s fields
After you’ve bitten off and chewed the main method’s first four lines, the rest of
the code in the earlier Listing 7-2 is sensible and straightforward. You have three
lines that put values in the myAccount object’s fields, three lines that put values in
the yourAccount object’s fields, and four lines that do some printing. Figure 7-3
shows the program’s output.

FIGURE 7-3:
Running the code

in Listings 7-1
and 7-2.

168 PART 3 Working with the Big Picture: Object-Oriented Programming

One program; several classes
Each program in Chapters 3 to 6 consists of a single class. That’s great for a book’s
introductory chapters. But in real life, a typical program consists of hundreds or
even thousands of classes. The program that spans Listings 7-1 and 7-2 consists
of two classes. Sure, having two classes isn’t like having thousands of classes, but
it’s a step in that direction.

In practice, most programmers put each class in a file of its own. When you create
a program, such as the one in Listings 7-1 and 7-2, you create two files on your
computer’s hard drive. Therefore, when you download this section’s example
from the web, you get two separate files — Account.java and UseAccount.java.

For information about running a program consisting of more than one .java file
in Eclipse, NetBeans, and IntelliJ IDEA, visit this book’s website (www.allmycode.
com/JavaForDummies).

Public classes
The first line of Listing 7-1 is

public class Account {

The Account class is public. A public class is available for use by all other classes.
For example, if you write an ATMController program in some remote corner of
cyberspace, then your ATMController program can contain code, such as
myAccount.balance = 24.02, making use of the Account class declared in
Listing 7-1. (Of course, your code has to know where in cyberspace I’ve stored the
code in Listing 7-1, but that’s another story.)

Listing 7-2 contains the code myAccount.balance = 24.02. You might say to
yourself, “The Account class has to be public because another class (the code in
Listing 7-2) uses the Account class.” Unfortunately, the real lowdown about pub-
lic classes is a bit more complicated. In fact, when the planets align themselves
correctly, one class can make use of another class’s code, even though the other
class isn’t public. (I cover the proper aligning of planets in Chapter 14.)

The dirty secret in this chapter’s code is that declaring certain classes to be public
simply makes me feel good. Yes, programmers do certain things to feel good. In
Listing 7-1, my esthetic sense of goodness comes from the fact that an Account
class is useful to many other programmers. When I create a class that declares
something useful and nameable — an Account, an Engine, a Customer, a
BrainWave, a Headache, or a SevenLayerCake class — I declare the class to be
public.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 7 Thinking in Terms of Classes and Objects 169

The UseAccount class in Listing 7-2 is also public. When a class contains a main
method, Java programmers tend to make the class public without thinking too
much about who uses the class. So even if no other class makes use of my main
method, I declare the UseAccount class to be public. Most of the classes in this
book contain main methods, so most of the classes in this book are public.

When you declare a class to be public, you must declare the class in a file whose
name is exactly the same as the name of the class (but with the .java extension
added). For example, if you declare public class MyImportantCode, you must
put the class’s code in a file named MyImportantCode.java, with uppercase let-
ters M, I, and C and all other letters lowercase. This file-naming rule has an
important consequence: If your code declares two public classes, your code must
consist of at least two .java files. In other words, you can’t declare two public
classes in one .java file.

For more news about the word public and other such words, see Chapter 14.

In this section, I create an Account class. You can create classes too.

 » An Organization has a name (such as XYZ Company), an annual revenue
(such as $100,000.00), and a boolean value indicating whether the organiza-
tion is or is not a profit-making organization. Companies that manufacture
and sell products are generally profit-making organizations; groups that
provide aid to victims of natural disasters are generally not profit-making
organizations.

Declare your own Organization class. Declare another class that creates
organizations and displays information about those organizations.

 » A product for sale in a food store has several characteristics: a type of food
(peach slices), a weight (500 grams), a cost ($1.83), a number of servings (4),
and a number of calories per serving (70).

Declare a FoodProduct class. Declare another class that creates FoodProduct
instances and displays information about those instances.

Defining a Method within a Class
(Displaying an Account)

Imagine a table containing the information about two accounts. (If you have trou-
ble imagining such a thing, just look at Table 7-1.)

170 PART 3 Working with the Big Picture: Object-Oriented Programming

In Table 7-1, each account has three things — a name, an address, and a balance.
That’s how things were done before object-oriented programming came along.
But object-oriented programming involved a big shift in thinking. With object-
oriented programming, each account can have a name, an address, a balance, and
a way of being displayed.

In object-oriented programming, each object has its own built-in functionality.
An account knows how to display itself. A string can tell you whether it has the
same characters inside it as another string has. A PrintStream instance, such as
System.out, knows how to do println. In object-oriented programming, each
object has its own methods. These methods are little subprograms that you can
call to have an object do things to (or for) itself.

And why is this a good idea? It’s good because you’re making pieces of data take
responsibility for themselves. With object-oriented programming, all the func-
tionality that’s associated with an account is collected inside the code for the
Account class. Everything you have to know about a string is located in the file
String.java. Anything having to do with year numbers (whether they have two
or four digits, for instance) is handled right inside the Year class. Therefore, if
anybody has problems with your Account class or your Year class, he or she knows
just where to look for all the code. That’s great!

Imagine an enhanced account table. In this new table, each object has built-in
functionality. Each account knows how to display itself on the screen. Each row of
the table has its own copy of a display method. Of course, you don’t need much
imagination to picture this table. I just happen to have a table you can look at. It’s
Table 7-2.

TABLE 7-1 Without Object-Oriented Programming
Name Address Balance

Barry Burd 222 Cyberspace Lane 24.02

Jane Q. Public 111 Consumer Street 55.63

TABLE 7-2 The Object-Oriented Way
Name Address Balance Display

Barry Burd 222 Cyberspace Lane 24.02 out.print ...

Jane Q. Public 111 Consumer Street 55.63 out.print ...

CHAPTER 7 Thinking in Terms of Classes and Objects 171

An account that displays itself
In Table 7-2, each account object has four things — a name, an address, a balance,
and a way of displaying itself on the screen. After you make the jump to object-
oriented thinking, you’ll never turn back. Listings 7-3 and 7-4 show programs
that implement the ideas in Table 7-2.

LISTING 7-3: An Account Displays Itself

import static java.lang.System.out;

public class Account {

 String name;

 String address;

 double balance;

 public void display() {

 out.print(name);

 out.print(" (");

 out.print(address);

 out.print(") has $");

 out.print(balance);

 }

}

LISTING 7-4: Using the Improved Account Class

public class UseAccount {

 public static void main(String args[]) {

 Account myAccount = new Account();

 Account yourAccount = new Account();

 myAccount.name = "Barry Burd";

 myAccount.address = "222 Cyberspace Lane";

 myAccount.balance = 24.02;

 yourAccount.name = "Jane Q. Public";

 yourAccount.address = "111 Consumer Street";

 yourAccount.balance = 55.63;

 myAccount.display();

 System.out.println();

 yourAccount.display();

 }

}

172 PART 3 Working with the Big Picture: Object-Oriented Programming

A run of the code in Listings 7-3 and 7-4 looks just like a run for Listings 7-1
and 7-2. You can see the action earlier, in Figure 7-3.

In Listing 7-3, the Account class has four things in it: a name, an address, a bal-
ance, and a display method. These things match up with the four columns in
Table 7-2. So each instance of the Account class has a name, an address, a bal-
ance, and a way of displaying itself. The way you call these things is nice and
uniform. To refer to the name stored in myAccount, you write

myAccount.name

To get myAccount to display itself on the screen, you write

myAccount.display()

The only difference is the parentheses.

When you call a method, you put parentheses after the method’s name.

The display method’s header
Look again at Listings 7-3 and 7-4. A call to the display method is inside the
 UseAccount class’s main method, but the declaration of the display method is up
in the Account class. The declaration has a header and a body. (See Chapter 3.) The
header has three words and some parentheses:

 » The word public serves roughly the same purpose as the word public in
Listing 7-1. Roughly speaking, any code can contain a call to a public method,
even if the calling code and the public method belong to two different classes.
In this section’s example, the decision to make the display method public is a
matter of taste. Normally, when I create a method that’s useful in a wide
variety of applications, I declare the method to be public.

 » The word void tells Java that when the display method is called, the
display method doesn’t return anything to the place that called it. To
see a method that does return something to the place that called it, see the
next section.

 » The word display is the method’s name. Every method must have a name.
Otherwise, you don’t have a way to call the method.

 » The parentheses contain all the things you’re going to pass to the
method when you call it. When you call a method, you can pass information
to that method on the fly. The display method in Listing 7-3 looks strange

CHAPTER 7 Thinking in Terms of Classes and Objects 173

because the parentheses in the method’s header have nothing inside them.
This nothingness indicates that no information is passed to the display
method when you call it. For a meatier example, see the next section.

Listing 7-3 contains the display method’s declaration, and Listing 7-4 contains
a call to the display method. Although Listings 7-3 and 7-4 contain different
classes, both uses of public in Listing 7-3 are optional. To find out why, check out
Chapter 14.

In the previous section, you create Organization and FoodProduct classes. Add
display methods to both of these classes and create separate classes that make
use of these display methods.

Sending Values to and from Methods
(Calculating Interest)

Think about sending someone to the supermarket to buy bread. When you do this,
you say, “Go to the supermarket and buy some bread.” (Try it at home. You’ll
have a fresh loaf of bread in no time at all!) Of course, some other time, you send
that same person to the supermarket to buy bananas. You say, “Go to the super-
market and buy some bananas.” And what’s the point of all of this? Well, you
have a method, and you have some on-the-fly information that you pass to the
method when you call it. The method is named goToTheSupermarketAndBuySome.
The on-the-fly information is either bread or bananas, depending on your culi-
nary needs. In Java, the method calls would look like this:

goToTheSupermarketAndBuySome(bread);

goToTheSupermarketAndBuySome(bananas);

The things in parentheses are called parameters or parameter lists. With parameters,
your methods become much more versatile. Instead of getting the same thing
each time, you can send somebody to the supermarket to buy bread one time,
bananas another time, and birdseed the third time. When you call your
goToTheSupermarketAndBuySome method, you decide right there what you’re
going to ask your pal to buy.

And what happens when your friend returns from the supermarket? “Here’s the
bread you asked me to buy,” says your friend. By carrying out your wishes, your
friend returns something to you. You make a method call, and the method returns
information (or a loaf of bread).

174 PART 3 Working with the Big Picture: Object-Oriented Programming

The thing returned to you is called the method’s return value. The general type of
thing that is returned to you is called the method’s return type. These concepts are
made more concrete in Listings 7-5 and 7-6.

LISTING 7-5: An Account That Calculates Its Own Interest

import static java.lang.System.out;

public class Account {

 String name;

 String address;

 double balance;

 public void display() {

 out.print(name);

 out.print(" (");

 out.print(address);

 out.print(") has $");

 out.print(balance);

 }

 public double getInterest(double percentageRate) {

 return balance * percentageRate / 100.00;

 }

}

LISTING 7-6: Calculating Interest

import static java.lang.System.out;

public class UseAccount {

 public static void main(String args[]) {

 Account myAccount = new Account();

 Account yourAccount = new Account();

 myAccount.name = "Barry Burd";

 myAccount.address = "222 Cyberspace Lane";

 myAccount.balance = 24.02;

 yourAccount.name = "Jane Q. Public";

 yourAccount.address = "111 Consumer Street";

 yourAccount.balance = 55.63;

 myAccount.display();

CHAPTER 7 Thinking in Terms of Classes and Objects 175

 out.print(" plus $");

 out.print(myAccount.getInterest(5.00));

 out.println(" interest ");

 yourAccount.display();

 double yourInterestRate = 7.00;

 out.print(" plus $");

 double yourInterestAmount = yourAccount.getInterest(yourInterestRate);

 out.print(yourInterestAmount);

 out.println(" interest ");

 }

}

Figure 7-4 shows the output of the code in Listings 7-5 and 7-6. In Listing 7-5,
the Account class has a getInterest method. This getInterest method is called
twice from the main method in Listing 7-6. The actual account balances and inter-
est rates are different each time.

 » In the first call, the balance is 24.02, and the interest rate is 5.00. The first
call, myAccount.getInterest(5.00), refers to the myAccount object and to
the values stored in the myAccount object’s fields. (See Figure 7-5.) When this
call is made, the expression balance * percentageRate / 100.00 stands
for 24.02 * 5.00 / 100.00.

 » In the second call, the balance is 55.63, and the interest rate is 7.00. In the
main method, just before this second call is made, the variable your
InterestRate is assigned the value 7.00. The call itself, yourAccount.
getInterest(yourInterestRate), refers to the yourAccount object and to
the values stored in the yourAccount object’s fields. (Again, see Figure 7-5.)
So, when the call is made, the expression balance * percentageRate /
100.00 stands for 55.63 * 7.00 / 100.00.

By the way, the main method in Listing 7-6 contains two calls to getInterest.
One call has the literal 5.00 in its parameter list; the other call has the variable
yourInterestRate in its parameter list. Why does one call use a literal and the
other call use a variable? No reason. I just want to show you that you can do it
either way.

FIGURE 7-4:
Running the code

in Listings 7-5
and 7-6.

176 PART 3 Working with the Big Picture: Object-Oriented Programming

Passing a value to a method
Take a look at the getInterest method’s header. (As you read the explanation in
the next few bullets, you can follow some of the ideas visually with the diagram in
Figure 7-6.)

FIGURE 7-5:
My account and

your account.

FIGURE 7-6:
Passing a value to

a method.

CHAPTER 7 Thinking in Terms of Classes and Objects 177

 » The word double tells Java that when the getInterest method is called,
the getInterest method returns a double value back to the place that
called it. The statement in the getInterest method’s body confirms this.
The statement says return balance * percentageRate / 100.00, and
the expression balance * percentageRate / 100.00 has type double.
(That’s because all the things in the expression — balance, percentageRate,
and 100.00 — have type double.)

When the getInterest method is called, the return statement calculates
balance * percentageRate / 100.00 and hands the calculation’s result
back to the code that called the method.

 » The word getInterest is the method’s name. That’s the name you use to call
the method when you’re writing the code for the UseAccount class.

 » The parentheses contain all the things that you pass to the method
when you call it. When you call a method, you can pass information to that
method on the fly. This information is the method’s parameter list. The
getInterest method’s header says that the getInterest method takes one
piece of information and that piece of information must be of type double:

public double getInterest(double percentageRate)

Sure enough, if you look at the first call to getInterest (down in the
useAccount class’s main method), that call has the number 5.00 in it. And
5.00 is a double literal. When I call getInterest, I’m giving the method a
value of type double.

If you don’t remember what a literal is, see Chapter 4.

The same story holds true for the second call to getInterest. Down
near the bottom of Listing 7-6, I call getInterest and feed the variable
yourInterestRate to the method in its parameter list. Luckily for me,
I declared yourInterestRate to be of type double just a few lines before
that.

When you run the code in Listings 7-5 and 7-6, the flow of action isn’t from top
to bottom. The action goes from main to getInterest, and then back to main, and
then back to getInterest, and, finally, back to main again. Figure 7-7 shows the
whole business.

178 PART 3 Working with the Big Picture: Object-Oriented Programming

Returning a value from the
getInterest method
When the getInterest method is called, the method executes the one statement
that’s in the method’s body: a return statement. The return statement computes
the value of balance * percentageRate / 100.00. If balance happens to be
24.02, and percentageRate is 5.00, the value of the expression is 1.201 —
around $1.20. (Because the computer works exclusively with 0s and 1s, Java gets
this number wrong by an ever-so-tiny amount. Java gets 1.2009999999999998.
That’s just something that humans have to live with.)

FIGURE 7-7:
The flow of

control in
Listings 7-5

and 7-6.

CHAPTER 7 Thinking in Terms of Classes and Objects 179

Anyway, after this value is calculated, Java executes the return, which sends the
value back to the place in main where getInterest was called. At that point in the
process, the entire method call — myAccount.getInterest(5.00) — takes on
the value 1.2009999999999998. The call itself is inside a println:

out.println(myAccount.getInterest(5.00));

So the println ends up with the following meaning:

out.println(1.2009999999999998);

The whole process, in which a value is passed back to the method call, is illus-
trated in Figure 7-8.

If a method returns anything, a call to the method is an expression with a value.
That value can be printed, assigned to a variable, added to something else, or
whatever. Anything you can do with any other kind of value, you can do with a
method call.

You might use the Account class in Listing 7-5 to solve a real problem. You’d call
the Account class’s display and getInterest methods in the course of an actual
banking application. But the UseAccount class in Listing 7-6 is artificial. The
UseAccount code creates some fake account data and then calls some Account class
methods to convince you that the Account class’s code works correctly. (You don’t

FIGURE 7-8:
A method call is

an expression
with a value.

180 PART 3 Working with the Big Picture: Object-Oriented Programming

seriously think that a bank has depositors named “Jane Q. Public” and “Barry
Burd,” do you?) The UseAccount class in Listing 7-6 is a test case — a short-lived
class whose sole purpose is to test another class’s code. Like the code in Listing 7-6,
each test case in this book is an ordinary class — a free-form class containing its
own main method. Free-form classes are okay, but they’re not optimal. Java
developers have something better — a more disciplined way of writing test cases.
The “better way” is called JUnit, and it’s described on this book’s website (www.
allmycode.com/JavaForDummies).

 » In previous sections, you create your own Organization class. Add a method
to the class that computes the amount of tax the organization pays. A
profit-making organization pays 10 percent of its revenue in tax, but a
nonprofit organization pays only 2 percent of its revenue in tax.

Make a separate class that creates two or three organizations and displays
information about each organization, including the amount of tax the
organization pays.

 » In previous sections, you create your own FoodProduct class. Add methods
to the class to compute the cost per 100 grams, the cost per serving, and the
total number of calories in the product.

Make a separate class that creates two or three products and displays
information about each product.

Making Numbers Look Good
Looking at Figure 7-4 again, you may be concerned that the interest on my account
is only $1.2009999999999998. Seemingly, the bank is cheating me out of
2 hundred-trillionths of a cent. I should go straight to the bank and demand my
fair interest. Maybe you and I should go together. We’ll kick up some fur at that
old bank and bust this scam right open. If my guess is correct, this is part of a big
salami scam. In a salami scam, someone shaves tiny amounts off millions of
accounts. People don’t notice their tiny little losses, but the person doing the
shaving collects enough for a quick escape to Barbados (or for a whole truckload
of salami).

Wait a minute! What about you? In Listing 7-6, you have yourAccount. And in
Figure 7-4, your name is Jane Q. Public. Nothing is motivating you to come with
me to the bank. Checking Figure 7-4 again, I see that you’re way ahead of the
game. According to my calculations, the program overpays you by 3 hundred-
trillionths of a cent. Between the two of us, we’re ahead by a hundred-trillionth of
a cent. What gives?

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 7 Thinking in Terms of Classes and Objects 181

Well, because computers use 0s (zeros) and 1s and don’t have an infinite amount
of space to do calculations, such inaccuracies as the ones shown in Figure 7-4 are
normal. The quickest solution is to display the inaccurate numbers in a more sen-
sible fashion. You can round the numbers and display only two digits beyond the
decimal point, and some handy tools from Java’s API (application programming
interface) can help. Listing 7-7 shows the code, and Figure 7-9 displays the pleas-
ant result.

LISTING 7-7: Making Your Numbers Look Right

import static java.lang.System.out;

public class UseAccount {

 public static void main(String args[]) {

 Account myAccount = new Account();

 Account yourAccount = new Account();

 myAccount.balance = 24.02;

 yourAccount.balance = 55.63;

 double myInterest = myAccount.getInterest(5.00);

 double yourInterest = yourAccount.getInterest(7.00);

 out.printf("$%4.2f\n", myInterest);

 out.printf("$%5.2f\n", myInterest);

 out.printf("$%.2f\n", myInterest);

 out.printf("$%3.2f\n", myInterest);

 out.printf("$%.2f $%.2f", myInterest, yourInterest);

 }

}

The inaccurate numbers in Figure 7-4 come from the computer’s use of 0s
and 1s. A mythical computer whose circuits were wired to use digits 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9 wouldn’t suffer from the same inaccuracies. So, to make things better,
Java provides its own special way around the computer’s inaccurate calculations.
Java’s API has a class named BigDecimal — a class that bypasses the computer’s
strange 0s and 1s and uses ordinary decimal digits to perform arithmetic calcula-
tions. For more information, visit this book’s website (www.allmycode.com/
JavaForDummies).

FIGURE 7-9:
Numbers that

look like dollar
amounts.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

182 PART 3 Working with the Big Picture: Object-Oriented Programming

Listing 7-7 uses a handy method named printf. When you call printf, you always
put at least two parameters inside the call’s parentheses:

 » The first parameter is a format string.

The format string uses funny-looking codes to describe exactly how the other
parameters are displayed.

 » All the other parameters (after the first) are values to be displayed.

Look at the last printf call of Listing 7-7. The first parameter’s format string has
two placeholders for numbers. The first placeholder (%.2f) describes the display
of myInterest. The second placeholder (another %.2f) describes the display of
yourInterest. To find out exactly how these format strings work, see Figures 7-10
through 7-14.

FIGURE 7-11:
Adding extra

places to display
a value.

FIGURE 7-10:
Using a format

string.

CHAPTER 7 Thinking in Terms of Classes and Objects 183

For more examples using the printf method and its format strings, see Chapters 8
and 9. For a complete list of options associated with the printf method’s format
string, see the java.util.Formatter page of Java’s API documentation at
https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html.

The format string in a printf call doesn’t change the way a number is stored
internally for calculations. All the format string does is create a nice-looking
bunch of digit characters that can be displayed on your screen.

FIGURE 7-12:
Displaying a value

without specify-
ing the exact

number of places.

FIGURE 7-13:
Specifying too
few places to

display a value.

FIGURE 7-14:
Displaying more

than one value
with a format

string.

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

184 PART 3 Working with the Big Picture: Object-Oriented Programming

The printf method is good for formatting values of any kind — ordinary num-
bers, hexadecimal numbers, dates, strings of characters, and some other strange
values. That’s why I show it to you in this section. But when you work with cur-
rency amounts, this section’s printf tricks are fairly primitive. For some better
ways to deal with currency amounts (such as the interest amounts in this sec-
tion’s example), see Chapter 11.

Here’s a Java “un-program.” It’s not a real Java program, because I’ve masked
some of the characters in the code. I replaced these characters with underscores
(_):

import static java.lang.System.out;

public class Main {

 public static void main(String[] args) {

 out.printf("%s%_%s", ">>", 7, "<<\n");

 out.printf("%s%___%s", ">>", 7, "<<\n");

 out.printf("%s%____%s", ">>", 7, "<<\n");

 out.printf("%s%____%s", ">>", 7, "<<\n");

 out.printf("%s%__%s", ">>", 7, "<<\n");

 out.printf("%s%__%s", ">>", -7, "<<\n");

 out.printf("%s%__%s", ">>", -7, "<<\n");

 out.printf("%s%_____%s", ">>", 7.0, "<<\n");

 out.printf("%s%_%s", ">>", "Hello", "<<\n");

 out.printf("%s%_%s", ">>", 'x', "<<\n");

 out.printf("%s%_%s", ">>", 'x', "<<\n");

 }

}

Replace the underscores so that this program produces the following output:

>>7<<

>> 7<<

>>7 <<

>>0000000007<<

>>+7<<
>>-7<<

>>(7)<<

>> 7.00000<<

>>HELLO<<

>>x<<

>>X<<

CHAPTER 7 Thinking in Terms of Classes and Objects 185

To do this, look for clues in the java.util.Formatter page of Java’s API
 documentation at https://docs.oracle.com/javase/8/docs/api/java/util/
Formatter.html.

Hiding Details with Accessor Methods
Put down this book and put on your hat. You’ve been such a loyal reader that I’m
taking you out to lunch!

I have just one problem. I’m a bit short on cash. Would you mind if, on the way to
lunch, we stopped at an automatic teller machine and picked up a few bucks? Also,
we have to use your account. My account is a little low.

Fortunately, the teller machine is easy to use. Just step right up and enter your
PIN. After you enter your PIN, the machine asks which of several variable names
you want to use for your current balance. You have a choice of balance324, myBal,
currentBalance, b$, BALANCE, asj999, or conStanTinople. Having selected a
variable name, you’re ready to select a memory location for the variable’s value.
You can select any number between 022FFF and 0555AA. (Those numbers are in
hexadecimal format.) After you configure the teller machine’s software, you can
easily get your cash. You did bring a screwdriver, didn’t you?

Good programming
When it comes to good computer programming practice, one word stands out
above all others: simplicity. When you’re writing complicated code, the last thing
you want is to deal with somebody else’s misnamed variables, convoluted solu-
tions to problems, or clever, last-minute kludges. You want a clean interface that
makes you solve your own problems and no one else’s.

In the automatic teller machine scenario that I describe earlier, the big problem is
that the machine’s design forces you to worry about other people’s concerns.
When you should be thinking about getting money for lunch, you’re thinking
instead about variables and storage locations. Sure, someone has to work out the
teller machine’s engineering problems, but the banking customer isn’t the
person.

This section is about safety, not security. Safe code keeps you from making acci-
dental programming errors. Secure code (a completely different story) keeps
malicious hackers from doing intentional damage.

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

186 PART 3 Working with the Big Picture: Object-Oriented Programming

So, everything connected with every aspect of a computer program has to be sim-
ple, right? Well, no. That’s not right. Sometimes, to make things simple in the
long run, you have to do lots of preparatory work up front. The people who built
the automated teller machine worked hard to make sure that the machine is
 consumer-proof. The machine’s interface, with its screen messages and buttons,
makes the machine a very complicated, but carefully designed, device.

The point is that making things look simple takes some planning. In the case of
object-oriented programming, one of the ways to make things look simple is to
prevent code outside a class from directly using fields defined inside the class.
Take a peek at the code in Listing 7-1. You’re working at a company that has just
spent $10 million for the code in the Account class. (That’s more than a million-
and-a-half per line!) Now your job is to write the UseAccount class. You would
like to write

myAccount.name = "Barry Burd";

but doing so would be getting you too far inside the guts of the Account class.
After all, people who use an automatic teller machine aren’t allowed to program
the machine’s variables. They can’t use the machine’s keypad to type the
statement

balanceOnAccount29872865457 = balanceOnAccount29872865457 + 1000000.00;

Instead, they push buttons that do the job in an orderly manner. That’s how a
programmer achieves safety and simplicity.

To keep things nice and orderly, you need to change the Account class from
 Listing 7-1 by outlawing such statements as the following:

myAccount.name = "Barry Burd";

and

out.print(yourAccount.balance);

Of course, this poses a problem. You’re the person who’s writing the code for the
UseAccount class. If you can’t write myAccount.name or yourAccount.balance,
how will you accomplish anything at all? The answer lies in things called accessor
methods. Listings 7-8 and 7-9 demonstrate these methods.

CHAPTER 7 Thinking in Terms of Classes and Objects 187

LISTING 7-8: Hide Those Fields

public class Account {

 private String name;

 private String address;

 private double balance;

 public void setName(String n) {

 name = n;

 }

 public String getName() {

 return name;

 }

 public void setAddress(String a) {

 address = a;

 }

 public String getAddress() {

 return address;

 }

 public void setBalance(double b) {

 balance = b;

 }

 public double getBalance() {

 return balance;

 }

}

LISTING 7-9: Calling Accessor Methods

import static java.lang.System.out;

public class UseAccount {

 public static void main(String args[]) {

 Account myAccount = new Account();

 Account yourAccount = new Account();

 myAccount.setName("Barry Burd");

 myAccount.setAddress("222 Cyberspace Lane");

 myAccount.setBalance(24.02);

(continued)

188 PART 3 Working with the Big Picture: Object-Oriented Programming

 yourAccount.setName("Jane Q. Public");

 yourAccount.setAddress("111 Consumer Street");

 yourAccount.setBalance(55.63);

 out.print(myAccount.getName());

 out.print(" (");

 out.print(myAccount.getAddress());

 out.print(") has $");

 out.print(myAccount.getBalance());

 out.println();

 out.print(yourAccount.getName());

 out.print(" (");

 out.print(yourAccount.getAddress());

 out.print(") has $");

 out.print(yourAccount.getBalance());

 }

}

A run of the code in Listings 7-8 and 7-9 looks no different from a run of List-
ings 7-1 and 7-2. Either program’s run is shown earlier, in Figure 7-3. The big
difference is that in Listing 7-8, the Account class enforces the carefully con-
trolled use of its name, address, and balance fields.

Public lives and private dreams:
Making a field inaccessible
Notice the addition of the word private in front of each of the Account class’s field
declarations. The word private is a Java keyword. When a field is declared private,
no code outside of the class can make direct reference to that field. So if you put
myAccount.name = "Barry Burd" in the UseAccount class of Listing 7-9, you get
an error message such as name has private access in Account.

Instead of referencing myAccount.name, the UseAccount programmer must call
method myAccount.setName or method myAccount.getName. These methods,
setName and getName, are called accessor methods because they provide access to
the Account class’s name field. (Actually, the term accessor method isn’t formally a
part of the Java programming language. It’s just the term that people use for
methods that do this sort of thing.) To zoom in even more, setName is called a
setter method, and getName is called a getter method. (I bet you won’t forget that
terminology!)

LISTING 7-9: (continued)

CHAPTER 7 Thinking in Terms of Classes and Objects 189

With many IDEs, you don’t have to type your own accessor methods. First, you
type a field declaration like private String name. Then, in your IDE’s menu bar,
you choose Source ➪ Generate Getters and Setters, or choose Code ➪ Insert
Code ➪ Setter or some mix of those commands. After you make all your choices,
the IDE creates accessor methods and adds them to your code.

Notice that all the setter and getter methods in Listing 7-8 are declared to be pub-
lic. This ensures that anyone from anywhere can call these two methods. The idea
here is that manipulating the actual fields from outside the Account code is
impossible, but you can easily reach the approved setter and getter methods for
using those fields.

Think again about the automatic teller machine. Someone using the ATM can’t
type a command that directly changes the value in his or her account’s balance
field, but the procedure for depositing a million-dollar check is easy to follow. The
people who build the teller machines know that if the check-depositing procedure
is complicated, plenty of customers will mess it up royally. So that’s the story —
make impossible anything that people shouldn’t do and make sure that the tasks
people should be doing are easy.

Nothing about having setter and getter methods is sacred. You don’t have to write
any setter and getter methods that you’re not going to use. For instance, in List-
ing 7-8, I can omit the declaration of method getAddress, and everything still
works. The only problem if I do this is that anyone else who wants to use my
Account class and retrieve the address of an existing account is up a creek.

When you create a method to set the value in a balance field, you don’t have to
name your method setBalance. You can name it tunaFish or whatever you like.
The trouble is that the setFieldname convention (with lowercase letters in set
and an uppercase letter to start the Fieldname part) is an established stylistic
convention in the world of Java programming. If you don’t follow the convention,
you confuse the kumquats out of other Java programmers. If your integrated
development environment has drag-and-drop GUI design capability, you may
temporarily lose that capability. (For a word about drag-and-drop GUI design, see
Chapters 2 and 16.)

When you call a setter method, you feed it a value of the type that’s being set.
That’s why, in Listing 7-9, you call yourAccount.setBalance(55.63) with a
parameter of type double. In contrast, when you call a getter method, you usually
don’t feed any values to the method. That’s why, in Listing 7-9, you call
yourAccount.getBalance() with an empty parameter list. Occasionally, you may
want to get and set a value with a single statement. To add a dollar to your
account’s existing balance, you write yourAccount.setBalance(yourAccount.
getBalance() + 1.00).

190 PART 3 Working with the Big Picture: Object-Oriented Programming

Enforcing rules with accessor methods
Go back to Listing 7-8 and take a quick look at the setName method. Imagine put-
ting the method’s assignment statement inside an if statement.

public void setName(String n) {

 if (!n.equals("")) {

 name = n;

 }

}

Now, if the programmer in charge of the UseAccount class writes myAccount.
setName(""), the call to setName doesn’t have any effect. Furthermore, because
the name field is private, the following statement is illegal in the UseAccount
class:

myAccount.name = "";

Of course, a call such as myAccount.setName("Joe Schmoe") still works because
"Joe Schmoe" doesn’t equal the empty string "".

That’s cool. With a private field and an accessor method, you can prevent someone
from assigning the empty string to an account’s name field. With more elaborate
if statements, you can enforce any rules you want.

In previous sections, you create your own Organization and FoodProduct classes.
In those classes, replace the default access fields with private fields. Create getter
and setter methods for those fields. In the setter methods, add code to ensure that
the String values aren’t empty and that numeric values aren’t negative.

Barry’s Own GUI Class
You may be getting tired of the bland, text-based programs that litter this book’s
pages. You may want something a bit flashier — something with text fields and
buttons. Well, I’ve got some examples for you!

I’ve created a class that I call DummiesFrame. When you import my DummiesFrame
class, you can create a simple graphical user interface (GUI) application with very
little effort.

Listing 7-10 uses my DummiesFrame class, and Figures 7-15 to 7-17 show you the
results.

CHAPTER 7 Thinking in Terms of Classes and Objects 191

LISTING 7-10: Your First DummiesFrame Example

import com.allmycode.dummiesframe.DummiesFrame;

public class GuessingGame {

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Greet Me!");

 frame.addRow("Your first name");

 frame.go();

 }

 public static String calculate(String firstName) {

 return "Hello, " + firstName + "!";
 }

}

FIGURE 7-15:
The code in

Listing 7-10 starts
running.

FIGURE 7-16:
The user fills in

the fields.

FIGURE 7-17:
The user clicks

the button.

192 PART 3 Working with the Big Picture: Object-Oriented Programming

Here’s a blow-by-blow description of the lines in Listing 7-10:

 » The first line

import com.allmycode.dummiesframe.DummiesFrame;

makes the name DummiesFrame available to the rest of the code in the listing.

 » Inside the main method, the statement

DummiesFrame frame = new DummiesFrame("Greet Me!");

creates an instance of my DummiesFrame class and makes the variable name
frame refer to that instance. A DummiesFrame object appears as a window on
the user’s screen. In this example, the text on the window’s title bar is Greet Me!

 » The next statement is a call to the frame object’s addRow method:

frame.addRow("Your first name");

This call puts a row on the face of the application’s window. The row consists
of a label (whose text is Your first name), an empty text field, and a red X mark
indicating that the user hasn’t yet typed anything useful into the field. (Refer to
Figure 7-15.)

 » A call to the frame object’s go method

frame.go();

makes the app’s window appear on the screen.

 » The header of the calculate method

public static String calculate(String firstName) {

tells Java two important things:

• The calculate method returns a value of type String.

• Java should expect the user to type a String value in the text field, and
whatever the user types will become the firstName parameter’s value.

To use my DummiesFrame class, your code must have a method named
calculate, and the calculate method must obey certain rules:

• The calculate method’s header must start with the words public
static.

• The method may return any Java type: String, int, double, or whatever.
(That’s actually not a rule; it’s an opportunity!)

• The calculate method must have the same number of parameters as
there are rows in the application’s window.

CHAPTER 7 Thinking in Terms of Classes and Objects 193

Listing 7-10 has only one addRow method call, so the window in Figure 7-10
has only one row (not including the Submit button), and so the calculate
method has only one parameter.

When the user starts typing text into the window’s text field, the red X mark
turns into a green check mark. (Refer to Figure 7-16.) The green check mark
indicates that the user has typed a value of the expected type (in this example,
a String value) into the text field.

 » When the user clicks the button, Java executes the calculate method. The
expression in the method’s return statement

return "Hello, " + firstName + "!";

tells Java what to display at the bottom of the window. (Refer to Figure 7-17.)
In this example, the user types Barry in the one and only text field, so the
value of firstName is "Barry", and the calculate method returns the string
"Hello, Barry!" (Ah! The perks of being a For Dummies author!)

Using my DummiesFrame class, you can build a simple GUI application with only
ten lines of code.

The DummiesFrame class isn’t built into the Java API so, in order to run the
code in Listing 7-10, my DummiesFrame.java file must be part of your project.
When you download the code from this book’s website (www.allmycode.com/
JavaForDummies), you get a folder named 07-10 containing both the Listing 7-10
code and my DummiesFrame.java code. But if you create your own project con-
taining the Listing 7-10, you have to add my DummiesFrame.java file manually.
The way you do this depends on which IDE you use. One way or another, my
DummiesFrame class is in a package named com.allmycode.dummiesframe, so the
DummiesFrame.java file must be in a directory named dummiesframe, which is
inside another directory named allmycode, which is inside yet another directory
named com. For more about packages, see Chapters 9 and 14.

To keep things simple, I include the DummiesFrame.java file in the 07-10 folder that
you download from this book’s website. But, really, is that the best way to add my
own code to your project? In Chapter 1, I describe files with the .class extension,
and the role that those files play in the running of a Java program. Instead of hand-
ing you my DummiesFrame.java file, I should be putting only a DummiesFrame.class
file in the download. And, on some other occasion, if I have to give you hundreds of
.class files, I should bundle them all into one big archive file. Java has a name for a
big file that encodes many smaller .class files. It’s called a JAR file and it has the
.jar extension. In a real-life application, if you’re preparing your code for other
people to use as part of their own applications, a JAR file is definitely the way to go.

My DummiesFrame class isn’t exclusively for greetings and salutations. Listing 7-11
uses DummiesFrame to do arithmetic.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

194 PART 3 Working with the Big Picture: Object-Oriented Programming

LISTING 7-11: A Really Simple Calculator

import com.allmycode.dummiesframe.DummiesFrame;

public class Addition {

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Adding Machine");

 frame.addRow("First number");

 frame.addRow("Second number");

 frame.setButtonText("Sum");

 frame.go();

 }

 public static int calculate(int firstNumber, int secondNumber) {

 return firstNumber + secondNumber;
 }

}

The window in Figure 7-18 has two rows because Listing 7-11 has two addRow calls
and the listing’s calculate method has two parameters. In addition, Listing 7-11
calls the frame object’s setButtonText method. So, in Figure 7-18, the text on the
face of the button isn’t the default word Submit.

Listing 7-12 contains a GUI version of the Guessing Game application from
 Chapter 5, and Figure 7-19 shows the game in action.

LISTING 7-12: I’m Thinking of a Number

import java.util.Random;

import com.allmycode.dummiesframe.DummiesFrame;

public class GuessingGame {

FIGURE 7-18:
Look! The code in

Listing 7-11
actually works!

CHAPTER 7 Thinking in Terms of Classes and Objects 195

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Guessing Game");

 frame.addRow("Enter an int from 1 to 10");

 frame.setButtonText("Submit your guess");

 frame.go();

 }

 public static String calculate(int inputNumber) {

 Random random = new Random();

 int randomNumber = random.nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 return "You win.";

 } else {

 return "You lose. The random number was " + randomNumber + ".";
 }

 }

}

In Listing 7-13, I use this chapter’s Account class alongside the DummiesFrame
class. I could get the same results without creating an Account instance, but I
want to show you how classes can cooperate to form a complete program. A run of
the code is in Figure 7-20.

LISTING 7-13: Using the Account Class

import com.allmycode.dummiesframe.DummiesFrame;

public class UseAccount {

 public static void main(String args[]) {

 DummiesFrame frame = new DummiesFrame("Display an Account");

 frame.addRow("Full name");

 frame.addRow("Address");

 frame.addRow("Balance");

 frame.setButtonText("Display");

FIGURE 7-19:
I win!

(continued)

196 PART 3 Working with the Big Picture: Object-Oriented Programming

 frame.go();

 }

 public static String calculate(String name, String address,

 double balance) {

 Account myAccount = new Account();

 myAccount.setName(name);

 myAccount.setAddress(address);

 myAccount.setBalance(balance);

 return myAccount.getName() + " (" + myAccount.getAddress() +
 ") has $" + myAccount.getBalance();
 }

}

Use the DummiesFrame class to create two GUI programs.

 » A window has text fields for an organization’s name, annual revenue, and
status (profit-making or not profit-making). When the user clicks a button, the
window displays the amount of tax the organization pays.

A profit-making organization pays 10 percent of its revenue in tax; a nonprofit
organization pays 2 percent of its revenue in tax.

 » A window has text fields for a product’s type of food, weight, cost, number of
servings, and number of calories per serving. When the user clicks a button,
the window displays the cost per 100 grams, the cost per serving, and the
total number of calories in the product.

FIGURE 7-20:
I’m rich.

LISTING 7-13: (continued)

CHAPTER 8 Saving Time and Money: Reusing Existing Code 197

IN THIS CHAPTER

 » Adding new life to old code

 » Tweaking your code

 » Making changes without spending a
fortune

Saving Time and Money:
Reusing Existing Code

Once upon a time, there was a beautiful princess. When the princess turned
25 (the optimal age for strength, good looks, and fine moral character),
her kind, old father brought her a gift in a lovely golden box. Anxious to

know what was in the box, the princess ripped off the golden wrapping paper.

When the box was finally opened, the princess was thrilled. To her surprise, her
father had given her what she had always wanted: a computer program that
always ran correctly. The program did everything the princess wanted, and did it
all exactly the way she wanted it to be done. The princess was happy, and so was
her father.

Even as time marched on, the computer program never failed. For years on end,
the princess changed her needs, expected more out of life, made increasing
demands, expanded her career, reached for more and more fulfillment, juggled
the desires of her husband and her kids, stretched the budget, and sought peace
within her soul. Through all of this, the program remained her steady, faithful
companion.

As the princess grew old, the program became old along with her. One evening, as
she sat by the fireside, she posed a daunting question to the program: “How do
you do it?” she asked. “How do you manage to keep giving the right answers, time
after time, year after year?”

Chapter 8

198 PART 3 Working with the Big Picture: Object-Oriented Programming

“Clean living,” replied the program. “I swim 20 apps each day, I take C++ to Word
off viruses, I avoid hogarithmic algorithms, I link Java in moderation, I say GNU
to bugs, I don’t smoke to back up, and I never byte off more than I can queue.”

Needless to say, the princess was stunned.

Defining a Class (What It Means to
Be an Employee)

Wouldn’t it be nice if every piece of software did just what you wanted it to do? In
an ideal world, you could buy a program, make it work right away, plug it seam-
lessly into new situations, and update it easily whenever your needs change.
Unfortunately, software of this kind doesn’t exist. (Nothing of this kind exists.)
The truth is that no matter what you want to do, you can find software that does
some of it, but not all of it.

This is one of the reasons why object-oriented programming has been successful.
For years, companies were buying prewritten code, only to discover that the code
didn’t do what they wanted it to do. So, what did the companies do about it? They
started messing with the code. Their programmers dug deep into the program
files, changed variable names, moved subprograms around, reworked formulas,
and generally made the code worse. The reality was that if a program didn’t
already do what you wanted it to do (even if it did something ever so close to what
you wanted), you could never improve the situation by mucking around inside the
code. The best option was always to chuck the whole program (expensive as that
was) and start all over again. What a sad state of affairs!

With object-oriented programming, a big change has come about. At its heart, an
object-oriented program is made to be modified. With correctly written software,
you can take advantage of features that are already built-in, add new features of
your own, and override features that don’t suit your needs. And the best part is
that the changes you make are clean. No clawing and digging into other people’s
brittle program code. Instead, you make nice, orderly additions and modifications
without touching the existing code’s internal logic. It’s the ideal solution.

The last word on employees
When you write an object-oriented program, you start by thinking about the data.
You’re writing about accounts. So what’s an account? You’re writing code to han-
dle button clicks. So what’s a button? You’re writing a program to send payroll
checks to employees. What’s an employee?

CHAPTER 8 Saving Time and Money: Reusing Existing Code 199

In this chapter’s first example, an employee is someone with a name and a job
title. Sure, employees have other characteristics, but for now I stick to the basics.
The code in Listing 8-1 defines what it means to be an employee.

LISTING 8-1: What Is an Employee?

import static java.lang.System.out;

public class Employee {

 private String name;

 private String jobTitle;

 public void setName(String nameIn) {

 name = nameIn;

 }

 public String getName() {

 return name;

 }

 public void setJobTitle(String jobTitleIn) {

 jobTitle = jobTitleIn;

 }

 public String getJobTitle() {

 return jobTitle;

 }

 public void cutCheck(double amountPaid) {

 out.printf("Pay to the order of %s ", name);

 out.printf("(%s) ***$", jobTitle);

 out.printf("%,.2f\n", amountPaid);

 }

}

According to Listing 8-1, each employee has seven features. Two of these features
are fairly simple: Each employee has a name and a job title. (In Listing 8-1, the
Employee class has a name field and a jobTitle field.)

And what else does an employee have? Each employee has four methods to handle
the values of the employee’s name and job title. These methods are setName,
getName, setJobTitle, and getJobTitle. I explain methods like these (accessor
methods) in Chapter 7.

200 PART 3 Working with the Big Picture: Object-Oriented Programming

On top of all of that, each employee has a cutCheck method. The idea is that the
method that writes payroll checks has to belong to one class or another. Because
most of the information in the payroll check is customized for a particular
employee, you may as well put the cutCheck method inside the Employee class.

For details about the printf calls in the cutCheck method, see the section “Cutting
a check,” later in this chapter.

Putting your class to good use
The Employee class in Listing 8-1 has no main method, so there’s no starting point
for executing code. To fix this deficiency, the programmer writes a separate pro-
gram with a main method and uses that program to create Employee instances.
Listing 8-2 shows a class with a main method — one that puts the code in
 Listing 8-1 to the test.

LISTING 8-2: Writing Payroll Checks

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

public class DoPayroll {

 public static void main(String args[]) throws IOException {

 Scanner diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 for (int empNum = 1; empNum <= 3; empNum++) {
 payOneEmployee(diskScanner);

 }

 diskScanner.close();

 }

 static void payOneEmployee(Scanner aScanner) {

 Employee anEmployee = new Employee();

 anEmployee.setName(aScanner.nextLine());

 anEmployee.setJobTitle(aScanner.nextLine());

 anEmployee.cutCheck(aScanner.nextDouble());

 aScanner.nextLine();

 }

}

CHAPTER 8 Saving Time and Money: Reusing Existing Code 201

(continued)

WHERE ON EARTH DO YOU LIVE?
Grouping separators vary from one country to another. This makes a big difference
when you try to read double values using Java’s Scanner class. To see what I mean,
have a serious look at the following JShell session.

jshell> import java.util.Scanner

jshell> import java.util.Locale

jshell> Scanner keyboard = new Scanner(System.in)

keyboard ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ... \E]
[infinity string=\Q8\E]

jshell> keyboard.nextDouble()

1000.00

$4 ==> 1000.0

jshell> Locale.setDefault(Locale.FRANCE)

jshell> keyboard = new Scanner(System.in)

keyboard ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ... \E]
[infinity string=\Q8\E]

jshell> keyboard.nextDouble()

1000,00

$7 ==> 1000.0

jshell> keyboard.nextDouble()

1000.00

| java.util.InputMismatchException thrown:

| at Scanner.throwFor (Scanner.java:860)

| at Scanner.next (Scanner.java:1497)

| at Scanner.nextDouble (Scanner.java:2467)

| at (#8:1)

jshell>

I conducted this session on a computer in the United States. The country of origin is rel-
evant because, in response to the first keyboard.nextDouble() call, I type 1000.00
(with a period before the last two zeros) and Java accepts this as meaning “one thou-
sand.”

But then, in the JShell session, I call Locale.setDefault(Locale.FRANCE), which tells
Java to behave as if my computer is in France. When I create another Scanner instance

202 PART 3 Working with the Big Picture: Object-Oriented Programming

To run the code in Listing 8-2, your hard drive must contain a file named
EmployeeInfo.txt. Fortunately, the stuff that you download from this book’s
website (www.allmycode.com/JavaForDummies) comes with an EmployeeInfo.
txt file. You can import the downloaded material into any of the three most

(continued)

and call keyboard.nextDouble() again, Java accepts 1000,00 (with a comma before
the last two zeros) as an expression meaning mille (French for “one thousand”). What’s
more, Java no longer accepts the period in 1000.00. When I type 1000.00 (with a
period) I get an InputMismatchException.

By default, your computer’s Scanner instance wants you to input double numbers the
way you normally type them in your country. If you type numbers according to another
country’s convention, you get an InputMismatchException. So, when you run the
code in Listing 8-2, the numbers in your EmployeeInfo.txt file must use your coun-
try’s format.

This brings me to the running of the code in Listing 8-2. The EmployeeInfo.txt file
that you download from this book’s website starts with the following three lines:

Barry Burd

CEO

5000.00

That last number 5000.00 has a period in it, so if your country prefers a comma in
place of my United States period, you get an InputMismatchException. In response
to this, you have two choices:

• In the downloaded EmployeeInfo.txt file, change the periods to commas.

• In the code of Listing 8-2, add the statement Locale.setDefault(Locale.US)
before the diskScanner declaration.

And finally, if you want your output to look like your own country’s numbers, you can do
it with Java’s Formatter class. Add something like this to your code:

out.print(

new java.util.Formatter().format(java.util.Locale.FRANCE, "%,.2f", 1000.00));

For all the details, see the API (Application Programming Interface) documentation for
Java’s Formatter class (https://docs.oracle.com/javase/8/docs/api/java/
util/Formatter.html and Locale class (https://docs.oracle.com/javase/8/
docs/api/java/util/Locale.html).

http://www.allmycode.com/JavaForDummies
https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html

CHAPTER 8 Saving Time and Money: Reusing Existing Code 203

popular Java IDEs (Eclipse, NetBeans, or IntelliJ IDEA). If you import into Eclipse,
you get a project named 08-01. That project typically lives on your hard drive in a
folder named /Users/your-user-name/workspace/08-01. Directly inside that
folder, you have a file named EmployeeInfo.txt.

For more words of wisdom about files on your hard drive, see the “Working with
Disk Files (a Brief Detour)” section in this chapter.

The DoPayroll class in Listing 8-2 has two methods. One of the methods, main,
calls the other method, payOneEmployee, three times. Each time around, the
payOneEmployee method gets stuff from the EmployeeInfo.txt file and feeds
this stuff to the Employee class’s methods.

Here’s how the variable name anEmployee is reused and recycled:

 » The first time that payOneEmployee is called, the statement anEmployee =
new Employee() makes anEmployee refer to a new object.

 » The second time that payOneEmployee is called, the computer executes the
same statement again. This second execution creates a new incarnation of the
anEmployee variable that refers to a brand-new object.

 » The third time around, all the same stuff happens again. A new anEmployee
variable ends up referring to a third object.

The whole story is pictured in Figure 8-1.

FIGURE 8-1:
Three calls to

the payOne
Employee

method.

204 PART 3 Working with the Big Picture: Object-Oriented Programming

There are always interesting things for you to try:

 » A PlaceToLive has an address, a number of bedrooms, and an area (in
square feet or square meters). Write the PlaceToLive class’s code. Write code
for a separate class named DisplayThePlaces. Your DisplayThePlaces
class creates a few PlaceToLive instances by assigning values to their
address, numberOfBedrooms, and area fields. The DisplayThePlaces class
also reads (from the keyboard) the cost of living in each place. For each place,
your code displays the cost per square foot (or square meter) and the cost
per bedroom.

 » Use your new PlaceToLive class and my DummiesFrame class (from
Chapter 7) to create a GUI application. The GUI application takes information
about a place to live and displays the place’s cost per square foot (or meter)
and the cost per bedroom.

Cutting a check
Listing 8-1 has three printf calls. Each printf call has a format string (like "(%s)
***$") and a variable (like jobTitle). Each format string has a placeholder (like
%s) that determines where and how the variable’s value is displayed.

For example, in the second printf call, the format string has a %s placeholder.
This %s holds a place for the jobTitle variable’s value. According to Java’s rules,
the notation %s always holds a place for a string and, sure enough, the variable
jobTitle is declared to be of type String in Listing 8-1. Parentheses and some
other characters surround the %s placeholder, so parentheses surround each job
title in the program’s output. (See Figure 8-2.)

Back in Listing 8-1, notice the comma inside the %,.2f placeholder. The comma
tells the program to use grouping separators. That’s why, in Figure 8-2, you see
$5,000.00, $7,000.00, and $10,000.00 instead of $5000.00, $7000.00, and
$10000.00.

FIGURE 8-2:
Everybody
gets paid.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 205

Working with Disk Files (a Brief Detour)
In previous chapters, programs read characters from the computer’s keyboard.
But the code in Listing 8-2 reads characters from a specific file. The file (named
EmployeeInfo.txt) lives on your computer’s hard drive.

This EmployeeInfo.txt file is like a word processing document. The file can con-
tain letters, digits, and other characters. But unlike a word processing document,
the EmployeeInfo.txt file contains no formatting — no italics, no bold, no font
sizes, nothing of that kind.

The EmployeeInfo.txt file contains only ordinary characters — the kinds of key-
strokes that you type while you play a guessing game from Chapters 5 and 6. Of
course, getting guesses from a user’s keyboard and reading employee data from a
disk file aren’t exactly the same. In a guessing game, the program displays
prompts, such as Enter an int from 1 to 10. The game program conducts a
back-and-forth dialogue with the person sitting at the keyboard. In contrast,
Listing 8-2 has no dialogue. This DoPayroll program reads characters from a
hard drive and doesn’t prompt or interact with anyone.

Most of this chapter is about code reuse. But Listing 8-2 stumbles upon an impor-
tant idea — an idea that’s not directly related to code reuse. Unlike the examples
in previous chapters, Listing 8-2 reads data from a stored disk file. So, in the fol-
lowing sections, I take a short side trip to explore disk files.

Storing data in a file
The code in Listing 8-2 doesn’t run unless you have some employee data sitting
in a file. Listing 8-2 says that this file is EmployeeInfo.txt. So, before running
the code of Listing 8-2, I created a small EmployeeInfo.txt file. The file is shown
in Figure 8-3; refer to Figure 8-2 for the resulting output.

When you visit this book’s website (www.allmycode.com/JavaForDummies) and
you download the book’s code listings, you get a copy of the EmployeeInfo.txt file.

FIGURE 8-3:
An Employee
Info.txt file.

http://www.allmycode.com/JavaForDummies

206 PART 3 Working with the Big Picture: Object-Oriented Programming

To keep Listing 8-2 simple, I insist that, when you type the characters in Figure 8-3,
you finish up by typing 10000.00 and then pressing Enter. (Look again at Figure 8-3
and notice how the cursor is at the start of a brand-new line.) If you forget to finish
by pressing Enter, the code in Listing 8-2 will crash when you try to run it.

Grouping separators vary from one country to another. The file shown in Figure 8-3
works on a computer configured in the United States where 5000.00 means “five
thousand.” But the file doesn’t work on a computer that’s configured in what I call
a “comma country” — a country where 5000,00 means “five thousand.” If you live
in a comma country, be sure to read this chapter’s “Where on Earth do you live?”
sidebar.

This book’s website (www.allmycode.com/JavaForDummies) has tips for readers
who need to create data files. This includes instructions for Windows, Linux, and
Macintosh environments.

Copying and pasting code
In almost any computer programming language, reading data from a file can be
tricky. You add extra lines of code to tell the computer what to do. Sometimes you
can copy and paste these lines from other peoples’ code. For example, you can
follow the pattern in Listing 8-2:

/*

 * The pattern in Listing 8-2

 */

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

class SomeClassName {

 public static void main(String args[]) throws IOException {

 Scanner scannerName = new Scanner(new File("SomeFileName"));

 //Some code goes here

 scannerName.nextInt();

 scannerName.nextDouble();

 scannerName.next();

 scannerName.nextLine();

http://www.allmycode.com/JavaForDummies

CHAPTER 8 Saving Time and Money: Reusing Existing Code 207

 //Some code goes here

 scannerName.close();

 }

}

You want to read data from a file. You start by imagining that you’re reading from
the keyboard. Put the usual Scanner and next codes into your program. Then add
some extra items from the Listing 8-2 pattern:

 » Add two new import declarations — one for java.io.File and another for
java.io.IOException.

 » Type throws IOException in your method’s header.

 » Type new File(" ") in your call to new Scanner.

 » Take a file that’s already on your hard drive. Type that filename inside the
quotation marks.

 » Take the word that you use for the name of your scanner. Reuse that word in
calls to next, nextInt, nextDouble, and so on.

 » Take the word that you use for the name of your scanner. Reuse that word in
a call to close.

Occasionally, copying and pasting code can get you into trouble. Maybe you’re
writing a program that doesn’t fit the simple Listing 8-2 pattern. You need to
tweak the pattern a bit. But to tweak the pattern, you need to understand some of
the ideas behind the pattern.

That’s how the next section comes to your rescue. It covers some of these ideas.

This paragraph is actually a confession. In almost every computer programming
language, input from a disk file is a nasty business. There’s no such thing as a
simple INPUT command. You normally have to set up a connection between the
code and the disk device, prepare for possible trouble reading from the device, do
your reading, convert the characters you read into the type of value that you want
and, finally, break your connection with the disk device. It’s a big mess. That’s
why, in this book, I rely on Java’s Scanner class. The Scanner class makes
input relatively painless. But, I admit, professional Java programmers hardly
ever use the Scanner class to do input. Instead, they use something called a
BufferedReader or classes in the java.nio package. If you’re not content
with my use of the Scanner class and you want to see Listing 8-2 translated into
a BufferedReader program, visit this book’s website (www.allmycode.com/
JavaForDummies).

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

208 PART 3 Working with the Big Picture: Object-Oriented Programming

Reading from a file
In previous chapters, programs read characters from the computer’s keyboard.
These programs use things like Scanner, System.in, and nextDouble — things
defined in Java’s API. The DoPayroll program in Listing 8-2 puts a new spin on
this story. Rather than read characters from the keyboard, the program reads
characters from the EmployeeInfo.txt file. The file lives on your computer’s hard
drive.

To read characters from a file, you use some of the same things that help you read
characters from the keyboard. You use Scanner, nextDouble, and other goodies.
But in addition to these goodies, you have a few extra hurdles to jump. Here’s a list:

 » You need a new File object. To be more precise, you need a new instance of
the API’s File class. You get this new instance with code like

new File("EmployeeInfo.txt")

The stuff in quotation marks is the name of a file — a file on your computer’s
hard drive. The file contains characters like those shown previously in
Figure 8-3.

At this point, the terminology makes mountains out of molehills. Sure, I use
the phrases new File object and new File instance, but all you’re doing is making
new File("EmployeeInfo.txt") stand for a file on your hard drive. After
you shove new File("EmployeeInfo.txt") into new Scanner,

Scanner diskScanner = new Scanner(new File("EmployeeInfo.txt"));

you can forget all about the new File business. From that point on in the
code, diskScanner stands for the EmployeeInfo.txt filename on your
computer’s hard drive. (The name diskScanner stands for a file on your hard
drive just as, in previous examples, the name keyboard stands for those
buttons you press day in and day out.)

Creating a new File object in Listing 8-2 is like creating a new Employee
object later in the same listing. It’s also like creating a new Account object in
the examples of Chapter 7. The only difference is that the Employee and
Account classes are defined in this book’s examples. The File class is defined
in Java’s API.

When you connect to a disk file with new Scanner, don’t forget the new File
part. If you write new Scanner("EmployeeInfo.txt") without new File,
the compiler won’t mind. (You don’t get any warnings or error messages
before you run the code.) But when you run the code, you don’t get anything
like the results that you expect to get.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 209

 » You must refer to the File class by its full name: java.io.File. You can
do this with an import declaration like the one in Listing 8-2. Alternatively, you
can clutter your code with a statement like

Scanner diskScanner = new Scanner(new java.io.File("EmployeeInfo.txt"));

 » You need a throws IOException clause. Lots of things can go wrong when
your program connects to EmployeeInfo.txt. For one thing, your hard drive
may not have a file named EmployeeInfo.txt. For another, the file
EmployeeInfo.txt may be in the wrong directory. To brace for this kind of
calamity, the Java programming language takes certain precautions. The
language insists that when a disk file is involved, you acknowledge the
possible dangers of calling new Scanner.

You can acknowledge the hazards in several possible ways, but the simplest
way is to use a throws clause. In Listing 8-2, the main method’s header ends
with the words throws IOException. By adding these two words, you appease
the Java compiler. It’s as if you’re saying “I know that calling new Scanner can
lead to problems. You don’t have to remind me.” And, sure enough, adding
throws IOException to your main method keeps the compiler from
complaining. (Without this throws clause, you get an unreported exception
error message.)

For the full story on Java exceptions, read Chapter 13. In the meantime, add
throws IOException to the header of any method that calls new
Scanner(new File(... .

 » You must refer to the IOException class by its full name: java.
io.IOException.

You can do this with an import declaration like the one in Listing 8-2.
Alternatively, you can enlarge the main method’s throws clause:

public static void main(String args[])throws java.io.IOException {

 » You must pass the file scanner’s name to the payOneEmployee method.

In Listing 7-5 in Chapter 7, the getInterest method has a parameter named
percentageRate. Whenever you call the getInterest method, you hand an
extra, up-to-date piece of information to the method. (You hand a number —
an interest rate — to the method. Figure 7-7 illustrates the idea.)

The same thing happens in Listing 8-2. The payOneEmployee method has a
parameter named aScanner. Whenever you call the payOneEmployee method,
you hand an extra, up-to-date piece of information to the method. (You hand
a scanner — a reference to a disk file — to the method.)

210 PART 3 Working with the Big Picture: Object-Oriented Programming

You may wonder why the payOneEmployee method needs a parameter. After all, in
Listing 8-2, the payOneEmployee method always reads data from the same file.
Why bother informing this method, each time you call it, that the disk file is still
the EmployeeInfo.txt file?

Well, there are plenty of ways to shuffle the code in Listing 8-2. Some ways don’t
involve a parameter. But the way that this example has arranged things, you have
two separate methods: a main method and a payOneEmployee method. You create
a scanner once inside the main method and then use the scanner three times —
once inside each call to the payOneEmployee method.

Anything you define inside a method is like a private joke that’s known only to the
code inside that method. So the diskScanner that you define inside the main
method isn’t automatically known inside the payOneEmployee method. To make
the payOneEmployee method aware of the disk file, you pass diskScanner from
the main method to the payOneEmployee method.

To read more about things that you declare inside (and outside) of methods, see
Chapter 10.

Who moved my file?
When you download the code from this book’s website (www.allmycode.com/
JavaForDummies), you’ll find files named Employee.java and DoPayroll.java —
the code in Listings 8-1 and 8-2. You’ll also find a file named EmployeeInfo.txt.
That’s good because, if Java can’t find the EmployeeInfo.txt file, the whole proj-
ect doesn’t run properly. Instead, you get a FileNotFoundException.

In general, when you get a FileNotFoundException, some file that your program
needs isn’t available to it. This is an easy mistake to make. It can be frustrating
because, to you, a file such as EmployeeInfo.txt may look like it’s available to
your program. But remember: Computers are stupid. If you make a tiny mistake,
the computer can’t read between the lines for you. So, if your EmployeeInfo.txt
file isn’t in the right directory on your hard drive or the filename is spelled incor-
rectly, the computer chokes when it tries to run your code.

Sometimes you know darn well that an EmployeeInfo.txt (or whatever.xyz) file
exists on your hard drive. But when you run your program, you still get a mean-
looking FileNotFoundException. When this happens, the file is usually in the
wrong directory on your hard drive. (Of course, it depends on your point of view.
Maybe the file is in the right directory, but your Java program is looking for the

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 8 Saving Time and Money: Reusing Existing Code 211

file in the wrong directory.) To diagnose this problem, add the following code to
Listing 8-2:

File employeeInfo = new File("EmployeeInfo.txt");

System.out.println("Looking for " + employeeInfo.getCanonicalPath());

When you run the code, Java tells you where, on your hard drive, the Employee
Info.txt file should be.

Adding directory names to your filenames
You can specify a file’s exact location in your Java code. Code like new File("C:\\
Users\\bburd\\workspace\\08-01\\EmployeeInfo.txt") looks really ugly, but
it works.

In the preceding paragraph, did you notice the double backslashes in “C: \\
Users\\bburd\\workspace ...”? If you’re a Windows user, you’d be tempted to
write C:\Users\bburd\workspace ... with single backslashes. But in Java, the
single backslash has its own, special meaning. (For example, back in Listing 7-7,
\n means to go to the next line.) So, in Java, to indicate a backslash inside a quoted
string, you use a double backslash instead.

Macintosh and Linux users might find comfort in the fact that their path separa-
tor, /, has no special meaning in a Java string. On a Mac, the code new File("/
Users/bburd/workspace/08-01/EmployeeInfo.txt") is as normal as breathing.
(Well, it’s almost that normal!) But Mac users and Linux wonks shouldn’t claim
superiority too quickly. Lines such as new File("/Users/bburd/workspace ...
work in Windows as well. In Windows, you can use either a slash (/) or a backslash
(\) as the path name separator. At the Windows command prompt, I can type cd
c:/users\bburd to get to my home directory.

If you know where your Java program looks for files, you can worm your way from
that place to the directory of your choice. Assume, for the moment, that the code
in Listing 8-2 normally looks for the EmployeeInfo.txt file in a directory named
08-01. As an experiment, go to the 08-01 directory and create a new subdirectory
named dataFiles. Then move my EmployeeInfo.txt file to the new dataFiles
directory. To read numbers and words from the file that you moved, modify
 Listing 8-2 with the code new File("dataFiles\\EmployeeInfo.txt") or new
File("dataFiles/EmployeeInfo.txt").

212 PART 3 Working with the Big Picture: Object-Oriented Programming

Reading a line at a time
In Listing 8-2, the payOneEmployee method illustrates some useful tricks for
reading data. In particular, every scanner that you create has a nextLine method.
(You might not use this nextLine method, but the method is available nonethe-
less.) When you call a scanner’s nextLine method, the method grabs everything
up to the end of the current line of text. In Listing 8-2, a call to nextLine can read
a whole line from the EmployeeInfo.txt file. (In another program, a scanner’s
nextLine call may read everything the user types on the keyboard up to the press-
ing of the Enter key.)

Notice my careful choice of words: nextLine reads everything “up to the end of
the current line.” Unfortunately, what it means to read up to the end of the cur-
rent line isn’t always what you think it means. Intermingling nextInt, next
Double, and nextLine calls can be messy. You have to watch what you’re doing
and check your program’s output carefully.

To understand all of this, you need to be painfully aware of a data file’s line breaks.
Think of a line break as an extra character, stuck between one line of text and the
next. Then imagine that calling nextLine means to read everything up to and
including the next line break.

Now take a look at Figure 8-4:

 » If one call to nextLine reads Barry Burd[LineBreak], the subsequent call
to nextLine reads CEO[LineBreak].

 » If one call to nextDouble reads the number 5000.00, the subsequent call to
nextLine reads the [LineBreak] that comes immediately after the number
5000.00. (That’s all the nextLine reads — a [LineBreak] and nothing more.)

 » If a call to nextLine reads the [LineBreak] after the number 5000.00, the
subsequent call to nextLine reads Harriet Ritter[LineBreak].

So, after reading the number 5000.00, you need two calls to nextLine in order to
scoop up the name Harriet Ritter. The mistake that I usually make is to forget the
first of those two calls.

Look again at the file in Figure 8-3. For this section’s code to work correctly, you
must have a line break after the last 10000.00. If you don’t, a final call to nextLine
makes your program crash and burn. The error message reads NoSuchElement
Exception: No line found.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 213

I’m always surprised by the number of quirks that I find in each programming
language’s scanning methods. For example, the first nextLine that reads from
the file in Figure 8-3 devours Barry Burd[LineBreak] from the file. But that
nextLine call delivers Barry Burd (with no line break) to the running code. So
nextLine looks for a line break, and then nextLine loses the line break. Yes, this
is a subtle point. And no, this subtle point hardly ever causes problems for
anyone.

If this business about nextDouble and nextLine confuses you, please don’t put
the blame on Java. Mixing input calls is delicate work in any computer program-
ming language. And the really nasty thing is that each programming language
approaches the problem a little differently. What you find out about nextLine in
Java helps you understand the issues when you get to know C++ or Visual Basic,
but it doesn’t tell you all the details. Each language’s details are unique to that
language. (Yes, it’s a big pain. But because all computer programmers become rich
and famous, the pain eventually pays off.)

Closing the connection to a disk file
To the average computer user, a keyboard doesn’t feel anything like a file stored
on a computer’s hard drive. But disk files and keyboard input have a lot in com-
mon. In fact, a basic principle of computer operating systems dictates that any
differences between two kinds of input be, for the programmer, as blurry as pos-
sible. As a Java programmer, you should treat disk files and keyboard input almost
the same way. That’s why Listing 8-2 contains a diskScanner.close() call.

When you run a Java program, you normally execute the main method’s state-
ments, starting with the first statement in the method body and ending with the
last statement in the method body. You take detours along the way, skipping past
else parts and diving into method bodies, but basically you finish executing

FIGURE 8-4:
Calling next
Double and
nextLine.

214 PART 3 Working with the Big Picture: Object-Oriented Programming

statements at the end of the main method. That’s why, in Listing 8-2, the call to
close is at the end of the main method’s body. When you run the code in
 Listing 8-2, the last thing you do is disconnect from the disk file. And, fortu-
nately, that disconnection takes place after you’ve executed all the nextLine and
nextDouble calls.

Previously in this chapter, you create instances of your own PlaceToLive class
and display information about those instances. Modify the text-based version of
your code so that it gets each instance’s characteristics (address, number of bed-
rooms, and area) from a disk file.

Defining Subclasses (What It Means to
Be a Full-Time or Part-Time Employee)

This time last year, your company paid $10 million for a piece of software. That
software came in the Employee.class file. People at Burd Brain Consulting (the
company that created the software) don’t want you to know about the innards of
the software. (Otherwise, you may steal their ideas.) So you don’t have the Java
program file that the software came from. (In other words, you don’t have
Employee.java.) You can run the bytecode in the Employee.class file. You can
also read the documentation in a web page named Employee.html. But you can’t see
the statements inside the Employee.java program, and you can’t change any of
the program’s code.

Since this time last year, your company has grown. Unlike in the old days, your
company now has two kinds of employees: full-time and part-time. Each full-time
employee is on a fixed, weekly salary. (If the employee works nights and weekends,
then in return for this monumental effort, the employee receives a hearty hand-
shake.) In contrast, each part-time employee works for an hourly wage. Your com-
pany deducts an amount from each full-time employee’s paycheck to pay for the
company’s benefits package. Part-time employees, however, don’t get benefits.

The question is whether the software that your company bought last year can keep
up with the company’s growth. You invested in a great program to handle employ-
ees and their payroll, but the program doesn’t differentiate between your full-
time and part-time employees. You have several options:

 » Call your next-door neighbor, whose 12-year-old child knows more about
computer programming than anyone in your company. Get this uppity

CHAPTER 8 Saving Time and Money: Reusing Existing Code 215

little brat to take the employee software apart, rewrite it, and hand it back to
you with all the changes and additions your company requires.

On second thought, you can’t do that. No matter how smart that kid is, the
complexities of the employee software will probably confuse the kid. By the
time you get the software back, it’ll be filled with bugs and inconsistencies.
Besides, you don’t even have the Employee.java file to hand to the kid. All
you have is the Employee.class file, which can’t be read or modified with a
text editor. (See Chapter 2.) Besides, your kid just beat up the neighbor’s kid.
You don’t want to give your neighbor the satisfaction of seeing you beg for the
whiz kid’s help.

 » Scrap the $10 million employee software. Get someone in your company to
rewrite the software from scratch.

In other words, say goodbye to your time and money.

 » Write a new front end for the employee software. That is, build a piece of
code that does some preliminary processing on full-time employees and then
hands the preliminary results to your $10 million software. Do the same for
part-time employees.

This idea could be decent or spell disaster. Are you sure that the existing
employee software has convenient hooks in it? (That is, does the employee
software contain entry points that allow your front-end software to easily
send preliminary data to the expensive employee software?) Remember: This
plan treats the existing software as one big, monolithic lump, which can
become cumbersome. Dividing the labor between your front-end code and
the existing employee program is difficult. And if you add layer upon layer to
existing black box code, you’ll probably end up with a fairly inefficient system.

 » Call Burd Brain Consulting, the company that sold you the employee
software. Tell Dr. Burd that you want the next version of his software to
differentiate between full-time and part-time employees.

“No problem,” says Dr. Burd. “It’ll be ready by the start of the next fiscal
quarter.” That evening, Dr. Burd makes a discreet phone call to his next-door
neighbor. . . .

 » Create two new Java classes named FullTimeEmployee and
PartTimeEmployee. Have each new class extend the existing functionality of
the expensive Employee class, but have each new class define its own,
specialized functionality for certain kinds of employees.

Way to go! Figure 8-5 shows the structure that you want to create.

216 PART 3 Working with the Big Picture: Object-Oriented Programming

Creating a subclass
In Listing 8-1, I define an Employee class. I can use what I define in Listing 8-1 and
extend the definition to create new, more specialized classes. So, in Listing 8-3,
I define a new class: a FullTimeEmployee class.

LISTING 8-3: What Is a FullTimeEmployee?

public class FullTimeEmployee extends Employee {

 private double weeklySalary;

 private double benefitDeduction;

 public void setWeeklySalary(double weeklySalaryIn) {

 weeklySalary = weeklySalaryIn;

 }

 public double getWeeklySalary() {

 return weeklySalary;

 }

 public void setBenefitDeduction(double benefitDedIn) {

 benefitDeduction = benefitDedIn;

 }

 public double getBenefitDeduction() {

 return benefitDeduction;

 }

 public double findPaymentAmount() {

 return weeklySalary - benefitDeduction;

 }

}

FIGURE 8-5:
The Employee

class family tree.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 217

Looking at Listing 8-3, you can see that each instance of the FullTimeEmployee
class has two fields: weeklySalary and benefitDeduction. But are those the only
fields that each FullTimeEmployee instance has? No, they’re not. The first line of
Listing 8-3 says that the FullTimeEmployee class extends the existing Employee
class. This means that in addition to having a weeklySalary and a benefit
Deduction, each FullTimeEmployee instance also has two other fields: name and
jobTitle. These two fields come from the definition of the Employee class, which
you can find in Listing 8-1.

In Listing 8-3, the magic word is extends. When one class extends an existing
class, the extending class automatically inherits functionality that’s defined in the
existing class. So, the FullTimeEmployee class inherits the name and jobTitle
fields. The FullTimeEmployee class also inherits all the methods that are declared
in the Employee class: setName, getName, setJobTitle, getJobTitle, and
cutCheck. The FullTimeEmployee class is a subclass of the Employee class. That
means the Employee class is the superclass of the FullTimeEmployee class. You can
also talk in terms of blood relatives: The FullTimeEmployee class is the child of the
Employee class, and the Employee class is the parent of the FullTimeEmployee
class.

It’s almost (but not quite) as if the FullTimeEmployee class were defined by the
code in Listing 8-4.

LISTING 8-4: Fake (But Informative) Code

import static java.lang.System.out;

public class FullTimeEmployee {

 private String name;

 private String jobTitle;

 private double weeklySalary;

 private double benefitDeduction;

 public void setName(String nameIn) {

 name = nameIn;

 }

 public String getName() {

 return name;

 }

 public void setJobTitle(String jobTitleIn) {

 jobTitle = jobTitleIn;

 }

(continued)

218 PART 3 Working with the Big Picture: Object-Oriented Programming

 public String getJobTitle() {

 return jobTitle;

 }

 public void setWeeklySalary(double weeklySalaryIn) {

 weeklySalary = weeklySalaryIn;

 }

 public double getWeeklySalary() {

 return weeklySalary;

 }

 public void setBenefitDeduction(double benefitDedIn) {

 benefitDeduction = benefitDedIn;

 }

 public double getBenefitDeduction() {

 return benefitDeduction;

 }

 public double findPaymentAmount() {

 return weeklySalary - benefitDeduction;

 }

 public void cutCheck(double amountPaid) {

 out.printf("Pay to the order of %s ", name);

 out.printf("(%s) ***$", jobTitle);

 out.printf("%,.2f\n", amountPaid);

 }

}

Why does the title for Listing 8-4 call that code fake? (Should the code feel
insulted?) Well, the main difference between Listing 8-4 and the inheritance situ-
ation in Listings 8-1 and 8-3 is this: A child class can’t directly reference the
private fields of its parent class. To do anything with the parent class’s private
fields, the child class has to call the parent class’s accessor methods. Back in
 Listing 8-3, calling setName("Rufus") would be legal, but the code name="Rufus"
wouldn’t be. If you believe everything you read in Listing 8-4, you’d think that
code in the FullTimeEmployee class can do name="Rufus". Well, it can’t. (My,
what a subtle point this is!)

You don’t need the Employee.java file on your hard drive to write code that
extends the Employee class. All you need is the file Employee.class.

LISTING 8-4: (continued)

CHAPTER 8 Saving Time and Money: Reusing Existing Code 219

Creating subclasses is habit-forming
After you’re accustomed to extending classes, you can get extend-happy. If you
created a FullTimeEmployee class, you might as well create a PartTimeEmployee
class, as shown in Listing 8-5.

LISTING 8-5: What Is a PartTimeEmployee?

public class PartTimeEmployee extends Employee {

 private double hourlyRate;

 public void setHourlyRate(double rateIn) {

 hourlyRate = rateIn;

 }

 public double getHourlyRate() {

 return hourlyRate;

 }

 public double findPaymentAmount(int hours) {

 return hourlyRate * hours;

 }

}

Unlike the FullTimeEmployee class, PartTimeEmployee has no salary or deduc-
tion. Instead PartTimeEmployee has an hourlyRate field. (Adding a numberOf
HoursWorked field would also be a possibility. I chose not to do this, figuring
that the number of hours a part-time employee works will change drastically
from week to week.)

Using Subclasses
The preceding section tells a story about creating subclasses. It’s a good story, but
it’s incomplete. Creating subclasses is fine, but you gain nothing from these sub-
classes unless you write code to use them. So in this section, you explore code that
uses subclasses.

Now the time has come for you to classify yourself as either a type-F person, a
type-P person, or a type-T person. (I’m this book’s author, so I get to make up
some personality types. I can even point to someone in public and say, “Look!
He’s a type-T person!”)

220 PART 3 Working with the Big Picture: Object-Oriented Programming

 » A type-F person wants to see the fundamentals. (The letter F stands for
fundamentals.) “Show me a program that lays out the principles in their barest,
most basic form,” says the type-F person. A type-F person isn’t worried about
bells and whistles. The bells come later, and the whistles may never come. If
you’re a type-F person, you want to see a program that uses the FullTime
Employee and PartTimeEmployee subclasses and then moves out of your
way so that you can get some work done.

 » A type-P person wants practical applications. (The letter P stands for practi-
cal.) Type-P people need to see ideas in context; otherwise, the ideas float
away too quickly. “Show me a program that demonstrates the usefulness of
the FullTimeEmployee and PartTimeEmployee subclasses,” says the type-P
person. “I have no use for your stinking abstractions. I want real-life examples,
and I want them now!”

 » A type-T person is inspired by something that I write about briefly in
Chapter 7: The type-T person wants to test the code in the FullTimeEmployee
and PartTimeEmployee subclasses. Testing the code means putting the
code through its paces — checking the output’s accuracy when the input is
ordinary, when the input is unexpected, and even when the input is com-
pletely unrealistic. What’s more, the type-T person wants to use a standard,
easily recognizable outline for the testing code so that other programmers
can quickly understand the test results. The type-T person creates JUnit tests
that use the FullTimeEmployee and PartTimeEmployee subclasses.

Listing 8-6, which is for the type-F crowd, is lean and simple and makes good
bedtime reading.

If you’re a type-P or type-T person, please visit this book’s website (www.
allmycode.com/JavaForDummies). The site contains examples to satisfy type-P
and type-T readers.

Listing 8-6 shows you a bare-bones program that uses the subclasses FullTime
Employee and PartTimeEmployee. Figure 8-6 shows the program’s output.

LISTING 8-6: Putting Subclasses to Good Use

public class DoPayrollTypeF {

 public static void main(String args[]) {

 FullTimeEmployee ftEmployee = new FullTimeEmployee();

 ftEmployee.setName("Barry Burd");

 ftEmployee.setJobTitle("CEO");

 ftEmployee.setWeeklySalary(5000.00);

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 8 Saving Time and Money: Reusing Existing Code 221

 ftEmployee.setBenefitDeduction(500.00);

 ftEmployee.cutCheck(ftEmployee.findPaymentAmount());

 System.out.println();

 PartTimeEmployee ptEmployee = new PartTimeEmployee();

 ptEmployee.setName("Steve Surace");

 ptEmployee.setJobTitle("Driver");

 ptEmployee.setHourlyRate(7.53);

 ptEmployee.cutCheck(ptEmployee.findPaymentAmount(10));

 }

}

To understand Listing 8-6, you need to keep an eye on three classes: Employee,
FullTimeEmployee, and PartTimeEmployee. (For a look at the code that defines
these classes, see Listings 8-1, 8-3, and 8-5.)

The first half of Listing 8-6 deals with a full-time employee. Notice how many
methods are available for use with the ftEmployee variable? For instance, you
can call ftEmployee.setWeeklySalary because ftEmployee has type Full
TimeEmployee. You can also call ftEmployee.setName because the FullTime
Employee class extends the Employee class.

Because cutCheck is declared in the Employee class, you can call ftEmployee.
cutCheck. But you can also call ftEmployee.findPaymentAmount because a find
PaymentAmount method is in the FullTimeEmployee class.

Making types match
Look again at the first half of Listing 8-6. Take special notice of that last
 statement — the one in which the full-time employee is actually cut a check. The
statement forms a nice, long chain of values and their types. You can see this by
reading the statement from the inside out:

 » Method ftEmployee.findPaymentAmount is called with an empty parameter
list. (Refer to Listing 8-6.) That’s good because the findPaymentAmount
method takes no parameters. (Refer to Listing 8-3.)

FIGURE 8-6:
The output of the

program in
Listing 8-6.

222 PART 3 Working with the Big Picture: Object-Oriented Programming

 » The findPaymentAmount method returns a value of type double. (Again, refer
to Listing 8-3.)

 » The double value that ftEmployee.findPaymentAmount returns is passed to
method ftEmployee.cutCheck. (Refer to Listing 8-6.) That’s good because
the cutCheck method takes one parameter of type double. (Refer to
Listing 8-1.)

For a fanciful graphical illustration, see Figure 8-7.

Always feed a method the value types that it wants in its parameter list.

The second half of the story
In the second half of Listing 8-6, the code creates an object of type PartTime
Employee. A variable of type PartTimeEmployee can do some of the same things a
FullTimeEmployee variable can do. But the PartTimeEmployee class doesn’t have
the setWeeklySalary and setBenefitDeduction methods. Instead, the Part
TimeEmployee class has the setHourlyRate method. (See Listing 8-5.) So in
 Listing 8-6 the next-to-last line is a call to the setHourlyRate method.

The last line of Listing 8-6 is by far the most interesting. On that line, the code
hands the number 10 (the number of hours worked) to the findPaymentAmount
method. Compare this with the earlier call to findPaymentAmount — the call
for the full-time employee in the first half of Listing 8-6. Between the two
 subclasses, FullTimeEmployee and PartTimeEmployee, are two different

FIGURE 8-7:
Matching

parameters.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 223

findPaymentAmount methods. The two methods have two different kinds of
parameter lists:

 » The FullTimeEmployee class’s findPaymentAmount method takes no
parameters (refer to Listing 8-3).

 » The PartTimeEmployee class’s findPaymentAmount method takes one int
parameter (refer to Listing 8-5).

This is par for the course. Finding the payment amount for a part-time employee
isn’t the same as finding the payment amount for a full-time employee. A part-
time employee’s pay changes each week, depending on the number of hours the
employee works in a week. The full-time employee’s pay stays the same each
week. So the FullTimeEmployee and PartTimeEmployee classes both have find
PaymentAmount methods, but each class’s method works quite differently.

Yes, I have some things for you to try:

 » Previously in this chapter, you create instances of your own PlaceToLive
class and display information about those instances. Create two subclasses of
your PlaceToLive class: a House class and an Apartment class. Each House
object has a mortgage cost (a monthly amount) and a property tax cost (a
yearly amount). Each Apartment object has a rental cost (a monthly amount).

A separate DisplayThePlaces class creates some houses and some apart-
ments. For each house or apartment, your DisplayThePlaces class displays
the total cost per square foot (or square meter) and the total cost per
bedroom, both calculated monthly.

 » In Chapter 7, you create an Organization class. Each instance of your
Organization class has a name, an annual revenue amount, and a boolean
value indicating whether the organization is or is not a profit-making
organization.

Create a new Organization_2.0 class. Each instance of this new class has
only a name and an annual revenue amount. Create two subclasses: a
ProfitMakingOrganization class and a NonProfitOrganization class.
A profit-making organization pays 10 percent of its revenue in tax, but a
nonprofit organization pays only 2 percent of its revenue in tax.

Make a separate class that creates ProfitMakingOrganization instances
and NonProfitOrganization instances while also displaying information
about each instance, including the amount of tax the organization pays.

224 PART 3 Working with the Big Picture: Object-Oriented Programming

Overriding Existing Methods (Changing the
Payments for Some Employees)

Wouldn’t you know it! Some knucklehead in the human resources department
offered double pay for overtime to one of your part-time employees. Now word is
getting around, and some of the other part-timers want double pay for their over-
time work. If this keeps up, you’ll end up in the poorhouse, so you need to send
out a memo to all the part-time employees, explaining why earning more money
is not to their benefit.

In the meantime, you have two kinds of part-time employees — the ones who
receive double pay for overtime hours and the ones who don’t — so you need to
modify your payroll software. What are your options?

 » Well, you can dig right into the PartTimeEmployee class code, make a few
changes, and hope for the best. (Not a good idea!)

 » You can follow the previous section’s advice and create a subclass of the
existing PartTimeEmployee class. “But wait,” you say. “The existing
PartTimeEmployee class already has a findPaymentAmount method. Do I
need some tricky way of bypassing this existing findPaymentAmount method
for each double-pay-for-overtime employee?”

At this point, you can thank your lucky stars that you’re doing object-oriented
programming in Java. With object-oriented programming, you can create a
subclass that overrides the functionality of its parent class. Listing 8-7 has just
such a subclass.

LISTING 8-7: Yet Another Subclass

public class PartTimeWithOver extends PartTimeEmployee {

 @Override

 public double findPaymentAmount(int hours) {

 if(hours <= 40) {

 return getHourlyRate() * hours;

 } else {

 return getHourlyRate() * 40 + getHourlyRate() * 2 * (hours - 40);
 }

 }

}

CHAPTER 8 Saving Time and Money: Reusing Existing Code 225

Figure 8-8 shows the relationship between the code in Listing 8-7 and other
pieces of code in this chapter. In particular, PartTimeWithOver is a subclass of a
subclass. In object-oriented programming, a chain of this kind is not the least bit
unusual. In fact, as subclasses go, this chain is rather short.

The PartTimeWithOver class extends the PartTimeEmployee class, but PartTime
WithOver picks and chooses what it wants to inherit from the PartTimeEmployee
class. Because PartTimeWithOver has its own declaration for the findPayment
Amount method, the PartTimeWithOver class doesn’t inherit a findPayment
Amount method from its parent. (See Figure 8-9.)

FIGURE 8-8:
A tree of classes.

FIGURE 8-9:
Method

findPayment
Amount isn’t

inherited.

226 PART 3 Working with the Big Picture: Object-Oriented Programming

According to the official terminology, the PartTimeWithOver class overrides its
parent class’s findPaymentAmount method. If you create an object from the
PartTimeWithOver class, that object has the name, jobTitle, hourlyRate, and
cutCheck of the PartTimeEmployee class, but the object has the findPayment
Amount method that’s defined in Listing 8-7.

A Java annotation
The word @Override in Listing 8-7 is an example of an annotation. A Java annota-
tion tells your computer something about your code. In particular, the @Override
annotation in Listing 8-7 tells the Java compiler to be on the lookout for a com-
mon coding error. The annotation says, “Make sure that the method immediately
following this annotation has the same stuff (the same name, the same parame-
ters, and so on) as one of the methods in the superclass. If not, then display an
error message.”

So if I accidentally type

public double findPaymentAmount(double hours) {

instead of int hours as in Listings 8-5 and 8-7, the compiler reminds me that my
new findPaymentAmount method doesn’t really override anything that’s in
Listing 8-5.

Java has other kinds of annotations (such as @Deprecated and @Suppress
Warnings). You can read a bit about the @SuppressWarnings annotation in
Chapter 9.

Java’s annotations are optional. If you remove the word @Override from
 Listing 8-7, your code still runs correctly. But the @Override annotation gives
your code some added safety. With @Override, the compiler checks to make sure
that you’re doing something you intend to do (namely, overriding one of the
superclass’s methods). And with apologies to George Orwell, some types of anno-
tations are less optional than others. You can omit certain annotations from your
code only if you’re willing to replace the annotation with lots and lots of unan-
notated Java code.

Using methods from classes and subclasses
If you need clarification on this notion of overriding a method, look at the code in
Listing 8-8. A run of that code is shown in Figure 8-10.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 227

LISTING 8-8: Testing the Code from Listing 8-7

public class DoPayrollTypeF {

 public static void main(String args[]) {

 FullTimeEmployee ftEmployee = new FullTimeEmployee();

 ftEmployee.setName("Barry Burd");

 ftEmployee.setJobTitle("CEO");

 ftEmployee.setWeeklySalary(5000.00);

 ftEmployee.setBenefitDeduction(500.00);

 ftEmployee.cutCheck(ftEmployee.findPaymentAmount());

 PartTimeEmployee ptEmployee = new PartTimeEmployee();

 ptEmployee.setName("Chris Apelian");

 ptEmployee.setJobTitle("Computer Book Author");

 ptEmployee.setHourlyRate(7.53);

 ptEmployee.cutCheck(ptEmployee.findPaymentAmount(50));

 PartTimeWithOver ptoEmployee = new PartTimeWithOver();

 ptoEmployee.setName("Steve Surace");

 ptoEmployee.setJobTitle("Driver");

 ptoEmployee.setHourlyRate(7.53);

 ptoEmployee.cutCheck(ptoEmployee.findPaymentAmount(50));

 }

}

The code in Listing 8-8 writes checks to three employees. The first employee is a
full-timer. The second is a part-time employee who hasn’t yet gotten wind of the
overtime payment scheme. The third employee knows about the overtime pay-
ment scheme and demands a fair wage.

With the subclasses, all three of these employees coexist in Listing 8-8. Sure, one
subclass comes from the old PartTimeEmployee class, but that doesn’t mean you
can’t create an object from the PartTimeEmployee class. In fact, Java is smart

FIGURE 8-10:
Running the code

of Listing 8-8.

228 PART 3 Working with the Big Picture: Object-Oriented Programming

about this. Listing 8-8 has three calls to the findPaymentAmount method, and
each call reaches out to a different version of the method:

 » In the first call, ftEmployee.findPaymentAmount, the ftEmployee variable is
an instance of the FullTimeEmployee class. So the method that’s called is the
one in Listing 8-3.

 » In the second call, ptEmployee.findPaymentAmount, the ptEmployee
variable is an instance of the PartTimeEmployee class. So the method that’s
called is the one in Listing 8-5.

 » In the third call, ptoEmployee.findPaymentAmount, the ptoEmployee
variable is an instance of the PartTimeWithOver class. So the method that’s
called is the one in Listing 8-7.

This code is fantastic. It’s clean, elegant, and efficient. With all the money that
you save on software, you can afford to pay everyone double for overtime hours.
(Whether you do that or keep the money for yourself is another story.)

Here are some things for you to try.

 » In previous sections, you create House and Apartment subclasses of your
PlaceToLive class. Create an ApartmentWithFees subclass of your
Apartment class. In addition to the monthly rental price, someone living in an
ApartmentWithFees pays a fixed amount every quarter (every three months).
Create a separate class that displays the monthly cost of living in a House
instance, an Apartment instance, and an ApartmentWithFees instance.

 » What output do you see when you run the following code? What does this
output tell you about variable declarations and method calling in Java?

public class Main {

 public static void main(String[] args) {

 MyThing myThing, myThing2;

 myThing = new MySubThing();

 myThing2 = new MyOtherThing();

 myThing.value = 7;

 myThing2.value = 44;

CHAPTER 8 Saving Time and Money: Reusing Existing Code 229

 myThing.display();

 myThing2.display();

 }

}

class MyThing {

 int value;

 public void display() {

 System.out.println("In MyThing, value is " + value);
 }

}

class MySubThing extends MyThing {

 @Override

 public void display() {

 System.out.println("in MySUBThing, value is " + value);
 }

}

class MyOtherThing extends MyThing {

 @Override

 public void display() {

 System.out.println("In MyOTHERThing, value is " + value);
 }

}

CHAPTER 9 Constructing New Objects 231

IN THIS CHAPTER

 » Defining constructors

 » Using constructors in subclasses

 » Using Java’s default constructor
features

 » Constructing a simple GUI from
scratch

Constructing New
Objects

M

s. Jennie Burd

121 Schoolhouse Lane

Anywhere, Kansas

Dear Ms. Burd,

In response to your letter of June 21, I believe I can say with complete assurance
that objects are not created spontaneously from nothing. Although I’ve never
actually seen an object being created (and no one else in this office can claim to
have seen an object in its moment of creation), I have every confidence that some
process or another is responsible for the building of these interesting and useful
thingamajigs. We here at ObjectsAndClasses.com support the unanimous opinions
of both the scientific community and the private sector in matters of this nature.
Furthermore, we agree with the recent finding of a Blue Ribbon Presidential Panel,
which concludes beyond any doubt that spontaneous object creation would impede
the present economic outlook.

Chapter 9

232 PART 3 Working with the Big Picture: Object-Oriented Programming

Please be assured that I have taken all steps necessary to ensure the safety and
well-being of you, our loyal customer. If you have any further questions, please do
not hesitate to contact our complaint department. The department’s manager is
Mr. Blake Wholl. You can contact him by visiting our company’s website.

Once again, let me thank you for your concern, and I hope you continue to patron-
ize ObjectsAndClasses.com.

Yours truly,

Mr. Scott Brickenchicker

The one who couldn’t get on the elevator in Chapter 4

Defining Constructors (What It Means
to Be a Temperature)

Here’s a statement that creates an object:

Account myAccount = new Account();

I know this works — I got it from one of my own examples in Chapter 7. Anyway,
in Chapter 7 I say, “when Java executes new Account(), you’re creating an object
by calling the Account class’s constructor.” What does this mean?

Well, when you ask the computer to create a new object, the computer responds
by performing certain actions. For starters, the computer finds a place in its
memory to store information about the new object. If the object has fields, the
fields should eventually have meaningful values.

To find out about fields, see Chapter 7.

One question is, when you ask the computer to create a new object, can you con-
trol what’s placed in the object’s fields? And what if you’re interested in doing
more than filling fields? Perhaps, when the computer creates a new object, you
have a whole list of jobs for the computer to carry out. For instance, when the
computer creates a new window object, you want the computer to realign the sizes
of all buttons in that window.

CHAPTER 9 Constructing New Objects 233

Creating a new object can involve all kinds of tasks, so in this chapter you create
constructors. A constructor tells the computer to perform a new object’s start-up
tasks.

What is a temperature?
“Good morning, and welcome to Object News. The local temperature in your area
is a pleasant 73 degrees Fahrenheit.”

Each temperature consists of two things: a number and a temperature scale. A
number is just a double value, such as 32.0 or 70.52. But what’s a temperature
scale? Is it a string of characters, like "Fahrenheit" or "Celsius"? Not really,
because some strings aren’t temperature scales. There’s no "Quelploof" tem-
perature scale, and a program that can display the temperature "73 degrees
Quelploof” is a bad program. So how can you limit the temperature scales to the
small number of scales that people use? One way to do it is with Java’s enum type.

What is a temperature scale?
(Java’s enum type)
Java provides lots of ways for you to group things together. In Chapter 11, you
group things to form an array. And in Chapter 12, you group things together to
form a collection. In this chapter, you group things into an enum type. (Of course,
you can’t group anything unless you can pronounce enum. The word enum is pro-
nounced “ee-noom,” like the first two syllables of the word enumeration.)

Creating a complicated enum type isn’t easy, but to create a simple enum type, just
write a bunch of words inside a pair of curly braces. Listing 9-1 defines an enum
type. The name of the enum type is TempScale.

LISTING 9-1: The TempScale Type (an enum Type)

public enum TempScale {

 CELSIUS, FAHRENHEIT, KELVIN, RANKINE,

 NEWTON, DELISLE, RÉAUMUR, RØMER, LEIDEN

}

In Listing 9-1, I’m showing off my physics prowess by naming not two, not four,
but nine different temperature scales. Some readers’ computers have trouble with
the special characters in the words RÉAUMUR and RØMER. If you’re one of those
readers, simply delete the words RÉAUMUR and RØMER from the code. I promise: It
won’t mess up the example.

234 PART 3 Working with the Big Picture: Object-Oriented Programming

When you define an enum type, two important things happen:

 » You create values.

Just as 13 and 151 are int values, CELSIUS and FAHRENHEIT are TempScale
values.

 » You can create variables to refer to those values.

In Listing 9-2, I declare the fields number and scale. Just as

double number;

declares that a number variable is of type double,

TempScale scale;

declares variable scale to be of type TempScale.

“To be of type TempScale” means that you can have values CELSIUS,
FAHRENHEIT, KELVIN, and so on. So, in Listing 9-2, I can give the scale
variable the value FAHRENHEIT (or TempScale.FAHRENHEIT, to be more
precise).

An enum type is a Java class in disguise. That’s why Listing 9-1 contains an entire
file devoted to one thing; namely, the declaration of an enum type (the TempScale
type). Like the declaration of a class, an enum type declaration belongs in a file all
its own. The code in Listing 9-1 belongs in a file named TempScale.java.

Okay, so then what is a temperature?
Each temperature consists of two things: a number and a temperature scale. The
code in Listing 9-2 makes this fact abundantly clear.

LISTING 9-2: The Temperature Class

public class Temperature {

 private double number;

 private TempScale scale;

 public Temperature() {

 number = 0.0;

 scale = TempScale.FAHRENHEIT;

 }

CHAPTER 9 Constructing New Objects 235

 public Temperature(double number) {

 this.number = number;

 scale = TempScale.FAHRENHEIT;

 }

 public Temperature(TempScale scale) {

 number = 0.0;

 this.scale = scale;

 }

 public Temperature(double number, TempScale scale) {

 this.number = number;

 this.scale = scale;

 }

 public void setNumber(double number) {

 this.number = number;

 }

 public double getNumber() {

 return number;

 }

 public void setScale(TempScale scale) {

 this.scale = scale;

 }

 public TempScale getScale() {

 return scale;

 }

}

The code in Listing 9-2 has the usual setter and getter methods (accessor meth-
ods for the number and scale fields).

For some good reading on setter and getter methods (also known as accessor
methods), see Chapter 7.

On top of all of that, Listing 9-2 has four other method-like-looking things. Each
of these method-like things has the name Temperature, which happens to be the
same as the name of the class. None of these Temperature method-like things has
a return type of any kind — not even void, which is the cop-out return type.

Each of these method-like things is called a constructor. A constructor is like a
method, except that a constructor has a special purpose: to create new objects.

236 PART 3 Working with the Big Picture: Object-Oriented Programming

Whenever the computer creates a new object, the computer executes the state-
ments inside a constructor.

You can omit the word public in the first lines of Listings 9-1 and 9-2. If you omit
public, other Java programs might not be able to use the features defined in the
TempScale type and in the Temperature class. (Don’t worry about the programs in
this chapter: With or without the word public, all programs in this chapter can
use the code in Listings 9-1 and 9-2. To find out which Java programs can use
classes that aren’t public, see Chapter 14.) If you do use the word public in the
first line of Listing 9-1, Listing 9-1 must be in a file named TempScale.java,
starting with a capital letter T. And if you do use the word public in the first line
of Listing 9-2, Listing 9-2 must be in a file named Temperature.java, starting
with a capital letter T. (For an introduction to public classes, see Chapter 7.)

What you can do with a temperature
Listing 9-3 gives form to some of the ideas that I describe in the preceding sec-
tion. In Listing 9-3, you call the constructors that are declared back in Listing 9-2.
Figure 9-1 shows what happens when you run all this code.

LISTING 9-3: Using the Temperature Class

import static java.lang.System.out;

public class UseTemperature {

 public static void main(String args[]) {

 final String format = "%5.2f degrees %s\n";

 Temperature temp = new Temperature();

 temp.setNumber(70.0);

 temp.setScale(TempScale.FAHRENHEIT);

 out.printf(format, temp.getNumber(), temp.getScale());

 temp = new Temperature(32.0);

 out.printf(format, temp.getNumber(), temp.getScale());

FIGURE 9-1:
Running the code

from Listing 9-3.

CHAPTER 9 Constructing New Objects 237

 temp = new Temperature(TempScale.CELSIUS);

 out.printf(format, temp.getNumber(), temp.getScale());

 temp = new Temperature(2.73, TempScale.KELVIN);

 out.printf(format, temp.getNumber(), temp.getScale());

 }

}

In Listing 9-3, each statement of the kind

temp = new Temperature(blah,blah,blah);

calls one of the constructors from Listing 9-2. So, by the time the code in
 Listing 9-3 is done running, it creates four instances of the Temperature class.
Each instance is created by calling a different constructor from Listing 9-2.

In Listing 9-3, the last of the four constructor calls has two parameters: 2.73 and
TempScale.KELVIN. This isn’t particular to constructor calls. A method call or a
constructor call can have a bunch of parameters. You separate one parameter
from another with a comma. Another name for “a bunch of parameters” is a
parameter list.

The only rule you must follow is to match the parameters in the call with the
parameters in the declaration. For example, in Listing 9-3, the fourth and last
constructor call

new Temperature(2.73, TempScale.KELVIN)

has two parameters: the first of type double and the second of type TempScale.
Java approves of this constructor call because Listing 9-2 contains a matching
declaration. That is, the header

public Temperature(double number, TempScale scale)

has two parameters: the first of type double and the second of type TempScale. If
a Temperature constructor call in Listing 9-3 had no matching declaration in
Listing 9-2, Listing 9-3 would crash and burn. (To state things more politely, Java
would display errors when you tried to compile the code in Listing 9-3.)

By the way, this business about multiple parameters isn’t new. Over in Chapter 6,
I write keyboard.findWithinHorizon(".",0).charAt(0). In that line, the
method call findWithinHorizon(".",0) has two parameters: a string and an int
value. Luckily for me, the Java API has a method declaration for findWithin
Horizon — a declaration whose first parameter is a string and whose second
parameter is an int value.

238 PART 3 Working with the Big Picture: Object-Oriented Programming

HOW TO CHEAT: ENUM TYPES
AND SWITCH STATEMENTS
Listings 9-2 and 9-3 contain long-winded names such as TempScale.FAHRENHEIT and
TempScale.CELSIUS. Names such as FAHRENHEIT and CELSIUS belong to my
TempScale type (the type defined in Listing 9-1). These names have no meaning out-
side of my TempScale context. (If you think I’m being egotistical with this "no meaning
outside of my context" remark, try deleting the TempScale. part of TempScale.
FAHRENHEIT in Listing 9-2. Suddenly, Java tells you that your code contains an error.)

Java is normally fussy about type names and dots. But when they created enum types,
the makers of Java decided that enum types and switch statements deserved special
treatment. You can use an enum value to decide which case to execute in a switch
statement. When you do this, you don’t use the enum type name in the case expres-
sions. For example, the following Java code is correct:

TempScale scale = TempScale.RANKINE;

char letter;

switch (scale) {

case CELSIUS:

 letter = 'C';

 break;

case KELVIN:

 letter = 'K';

 break;

case RANKINE:

case RÉAUMUR:

case RØMER:

 letter = 'R';

 break;

default:

 letter = 'X';

 break;

}

In the first line of code, I write TempScale.RANKINE because this first line isn’t inside a
switch statement. But in the next several lines of code, I write case CELSIUS, case
KELVIN, and case RANKINE without the word TempScale. In fact, if I create a case
clause by writing case TempScale.RANKINE, Java complains with a loud, obnoxious
error message.

CHAPTER 9 Constructing New Objects 239

Calling new Temperature(32.0):
A case study
When the computer executes one of the new Temperature statements in
 Listing 9-3, the computer has to decide which of the constructors in Listing 9-2
to use. The computer decides by looking at the parameter list — the stuff in
parentheses after the words new Temperature. For instance, when the computer
executes

temp = new Temperature(32.0);

from Listing 9-3, the computer says to itself, “The number 32.0 in parentheses is
a double value. One of the Temperature constructors in Listing 9-2 has just one
parameter with type double. The constructor’s header looks like this:

public Temperature(double number)

“So, I guess I’ll execute the statements inside that particular constructor.” The
computer goes on to execute the following statements:

this.number = number;

scale = TempScale.FAHRENHEIT;

As a result, you get a brand-new object whose number field has the value 32.0 and
whose scale field has the value TempScale.FAHRENHEIT.

In the two lines of code, you have two statements that set values for the fields
number and scale. Take a look at the second of these statements, which is a bit
easier to understand. The second statement sets the new object’s scale field to
TempScale.FAHRENHEIT. You see, the constructor’s parameter list is (double
number), and that list doesn’t include a scale value. So whoever programmed this
code had to make a decision about what value to use for the scale field. The
 programmer could have chosen FAHRENHEIT or CELSIUS, but she could also have
chosen KELVIN, RANKINE, or any of the other obscure scales named in Listing 9-1.
(This programmer happens to live in New Jersey, in the United States, where
 people commonly use the old Fahrenheit temperature scale.)

Marching back to the first of the two statements, this first statement assigns a
value to the new object’s number field. The statement uses a cute trick that you can
see in many constructors (and in other methods that assign values to objects’
fields). To understand the trick, take a look at Listing 9-4. The listing shows you
two ways that I could have written the same constructor code.

240 PART 3 Working with the Big Picture: Object-Oriented Programming

LISTING 9-4: Two Ways to Accomplish the Same Thing

//Use this constructor ...

 public Temperature(double whatever) {

 number = whatever;

 scale = TempScale.FAHRENHEIT;

 }

//... or use this constructor ...

 public Temperature(double number) {

 this.number = number;

 scale = TempScale.FAHRENHEIT;

 }

//... but don't put both constructors in your code.

Listing 9-4 has two constructors in it. In the first constructor, I use two different
names: number and whatever. In the second constructor, I don’t need two names.
Rather than make up a new name for the constructor’s parameter, I reuse an
existing name by writing this.number.

Here’s what’s going on in Listing 9-2:

 » In the statement this.number = number, the name this.number refers to the
new object’s number field — the field that’s declared near the top of Listing 9-2.
(See Figure 9-2.)

In the statement this.number = number, number (on its own, without this)
refers to the constructor’s parameter. (Again, see Figure 9-2.)

FIGURE 9-2:
What this.
number and

number mean.

CHAPTER 9 Constructing New Objects 241

In general, this.someName refers to a field belonging to the object that contains
the code. In contrast, plain old someName refers to the closest place where
someName happens to be declared. In the statement this.number = number (refer
to Listing 9-2), that closest place happens to be the Temperature constructor’s
parameter list.

Some things never change
Chapter 7 introduces the printf method and explains that each printf call starts
with a format string. The format string describes the way the other parameters
are to be displayed.

In previous examples, this format string is always a quoted literal. For instance,
the first printf call in Listing 7-7 (see Chapter 7) is

out.printf("$%4.2f\n", myInterest);

WHAT’S THIS ALL ABOUT?
Suppose your code contains a constructor — the first of the two constructors in
Listing 9-4. The whatever parameter is passed a number like 32.0, for instance. Then
the first statement in the constructor’s body assigns that value, 32.0, to the new object’s
number field. The code works. But in writing this code, you had to make up a new name
for a parameter — the name whatever. And the only purpose for this new name is to
hand a value to the object’s number field. What a waste! To distinguish between the
parameter and the number field, you gave a name to something that was just momen-
tary storage for the number value.

Making up names is an art, not a science. I’ve gone through plenty of naming phases.
Years ago, whenever I needed a new name for a parameter, I picked a confusing mis-
spelling of the original variable name. (I’d name the parameter something like numbr
or nuhmber.) I’ve also tried changing a variable name’s capitalization to come up with
a parameter name. (I’d use parameter names like Number or nUMBER.) In Chapter 8,
I name all my parameters by adding the suffix In to their corresponding variable names.
(The jobTitle variable matched up with the jobTitleIn parameter.) None of these
naming schemes works well — I can never remember the quirky new names that I’ve
created. The good news is that this parameter-naming effort isn’t necessary. You can
give the parameter the same name as the variable. To distinguish between the two, you
use the Java keyword this.

242 PART 3 Working with the Big Picture: Object-Oriented Programming

In Listing 9-3, I break with tradition and begin the printf call with a variable that
I name format.

out.printf(format, temp.getNumber(), temp.getScale());

That’s okay as long as my format variable is of type String. And indeed, in
 Listing 9-3, the first variable declaration is

final String format = "%5.2f degrees %s\n";

In this declaration of the format variable, take special note of the word final.
This Java keyword indicates that the value of format can’t be changed. If I add
another assignment statement to Listing 9-3

format = "%6.2f (%s)\n";

the compiler barks back at me with the message cannot assign a value to
final variable.

When I write the code in Listing 9-3, the use of the final keyword isn’t absolutely
necessary. But the final keyword provides some extra protection. When I initial-
ize format to "%5.2f degrees %s\n", I intend to use this same format just as it
is, over and over again. I know darn well that I don’t intend to change the format
variable’s value. Of course, in a 10,000-line program, I can become confused and
try to assign a new value to format somewhere deep down in the code. To prevent
me from accidentally changing the format string, I declare the format variable to
be final. It’s just good, safe programming practice.

There’s always more stuff for you to try.

 » Create a Student class with a name, an ID number, a grade point average
(GPA), and a major area of study. The student’s name is a String. The
student’s ID number is an int value. The GPA is a double value between 0.0
and 4.0. The Major is an enum type, with values such as COMPUTER_SCIENCE,
MATHEMATICS, LITERATURE, PHYSICS, and HISTORY.

Every student has a name and an ID number, but a brand-new student might
not have a GPA or a major. Create constructors with and without GPA and
Major parameters.

As usual, create a separate class that makes use of your new Student class.

 » Create an AirplaneFlight class with a flight number, a departure airport,
the time of departure, an arrival airport, and a time of arrival. The flight
number is an int value. The departure and arrival airport fields belong to an
Airport enum type, with values corresponding to some of the official IATA

CHAPTER 9 Constructing New Objects 243

airport codes. (For example, London Heathrow Airport’s code is LHR; Los
Angeles International Airport’s code is LAX; check out http://www.iata.org/
publications/Pages/code-search.aspx for a searchable database of
airline codes.)

For the times of arrival and departure, use Java’s LocalTime class. (For more
on LocalTime, check out the LocalTime documents page at https://docs.
oracle.com/javase/8/docs/api/java/time/LocalTime.html.) To create
a LocalTime object that’s set to 2:15 PM (also known as 14:15), execute

LocalTime twoFifteen = LocalTime.of(14, 15);

To create a LocalTime object that’s set to the current time (according to the
computer’s system clock), execute

LocalTime currentTime = LocalTime.now();

Every flight has a number, a departure airport, and an arrival airport. But
some flights might not have departure and arrival times. Create constructors
with and without departure and arrival time parameters.

Create a separate class that makes use of your new AirplaneFlight class.

More Subclasses (Doing Something
about the Weather)

In Chapter 8, I make a big fuss over the notion of subclasses. That’s the right thing
to do. Subclasses make code reusable, and reusable code is good code. With that in
mind, it’s time to create a subclass of the Temperature class (which I develop in
this chapter’s first section).

Building better temperatures
After perusing the code in Listing 9-3, you decide that the responsibility for dis-
playing temperatures has been seriously misplaced. Listing 9-3 has several
tedious repetitions of the lines to print temperature values. A 1970s programmer
would tell you to collect those lines into one place and turn them into a method.
(The 1970s programmer wouldn’t have used the word method, but that’s not
important right now.) Collecting lines into methods is fine, but with today’s
object-oriented programming methodology, you think in broader terms. Why not
get each temperature object to take responsibility for displaying itself? After all,

http://www.iata.org/publications/Pages/code-search.aspx
http://www.iata.org/publications/Pages/code-search.aspx
https://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html
https://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html

244 PART 3 Working with the Big Picture: Object-Oriented Programming

if you develop a display method, you probably want to share the method with
other people who use temperatures. So put the method right inside the declaration
of a temperature object. That way, anyone who uses the code for temperatures
has easy access to your display method.

Now replay the tape from Chapter 8. “Blah, blah, blah . . . don’t want to modify
existing code . . . blah, blah, blah . . . too costly to start again from scratch . . . blah,
blah, blah . . . extend existing functionality.” It all adds up to one thing:

Don’t abuse it. Instead, reuse it.

So you decide to create a subclass of the Temperature class — the class defined in
Listing 9-2. Your new subclass complements the Temperature class’s functional-
ity by having methods to display values in a nice, uniform fashion. The new class,
TemperatureNice, is shown in Listing 9-5.

LISTING 9-5: The TemperatureNice Class

import static java.lang.System.out;

public class TemperatureNice extends Temperature {

 public TemperatureNice() {

 super();

 }

 public TemperatureNice(double number) {

 super(number);

 }

 public TemperatureNice(TempScale scale) {

 super(scale);

 }

 public TemperatureNice(double number, TempScale scale) {

 super(number, scale);

 }

 public void display() {

 out.printf("%5.2f degrees %s\n", getNumber(), getScale());

 }

}

In the display method of Listing 9-5, notice the calls to the Temperature
class’s getNumber and getScale methods. Why do I do this? Well, inside the

CHAPTER 9 Constructing New Objects 245

TemperatureNice class’s code, any direct references to the number and scale
fields would generate error messages. It’s true that every TemperatureNice
object has its own number and scale fields. (After all, TemperatureNice is a sub-
class of the Temperature class, and the code for the Temperature class defines the
number and scale fields.) But because number and scale are declared to be private
inside the Temperature class, only code that’s right inside the Temperature class
can directly use these fields.

Don’t put additional declarations of the number and scale fields inside the
TemperatureNice class’s code. If you do, you inadvertently create four different
variables (two called number and another two called scale). You’ll assign values to
one pair of variables. Then you’ll be shocked that when you display the other pair
of variables, those values seem to have disappeared.

When an object’s code contains a call to one of the object’s own methods, you
don’t need to preface the call with a dot. For instance, in the last statement of
Listing 9-5, the object calls its own methods with getNumber() and getScale(),
not with someObject.getNumber() and somethingOrOther.getScale(). If going
dotless makes you queasy, you can compensate by taking advantage of yet another
use for the this keyword: Just write this.getNumber() and this.getScale() in
the last line of Listing 9-5.

Constructors for subclasses
By far, the biggest news in Listing 9-5 is the way the code declares constructors.
The TemperatureNice class has four of its own constructors. If you’ve gotten
in gear thinking about subclass inheritance, you may wonder why these con-
structor declarations are necessary. Doesn’t TemperatureNice inherit the parent
Temperature class’s constructors? No, subclasses don’t inherit constructors.

Subclasses don’t inherit constructors.

That’s right. Subclasses don’t inherit constructors. In one oddball case, a con-
structor may look like it’s being inherited, but that oddball situation is a fluke, not
the norm. In general, when you define a subclass, you declare new constructors to
go with the subclass.

I describe the oddball case (in which a constructor looks like it’s being inherited)
later in this chapter, in the section “The default constructor.”

So the code in Listing 9-5 has four constructors. Each constructor has the name
TemperatureNice, and each constructor has its own uniquely identifiable param-
eter list. That’s the boring part. The interesting part is that each constructor
makes a call to something named super, which is a Java keyword.

246 PART 3 Working with the Big Picture: Object-Oriented Programming

In Listing 9-5, super stands for a constructor in the parent class:

 » The statement super() in Listing 9-5 calls the parameterless Temperature()
constructor that’s in Listing 9-2. That parameterless constructor assigns 0.0 to
the number field and TempScale.FAHRENHEIT to the scale field.

 » The statement super(number, scale) in Listing 9-5 calls the constructor
Temperature(double number, TempScale scale) that’s in Listing 9-2. In
turn, the constructor assigns values to the number and scale fields.

 » In a similar way, the statements super(number) and super(scale) in
Listing 9-5 call constructors from Listing 9-2.

The computer decides which of the Temperature class’s constructors is being
called by looking at the parameter list after the word super. For instance, when
the computer executes

super(number, scale);

from Listing 9-5, the computer says to itself, “The number and scale fields in
parentheses have types double and TempScale. But only one of the Temperature
constructors in Listing 9-2 has two parameters with types double and TempScale.
The constructor’s header looks like this:

public Temperature(double number, TempScale scale)

“So, I guess I’ll execute the statements inside that particular constructor.”

Using all this stuff
In Listing 9-5, I define what it means to be in the TemperatureNice class. Now
it’s time to put this TemperatureNice class to good use. Listing 9-6 has code that
uses TemperatureNice.

LISTING 9-6: Using the TemperatureNice Class

public class UseTemperatureNice {

 public static void main(String args[]) {

 TemperatureNice temp = new TemperatureNice();

 temp.setNumber(70.0);

 temp.setScale(TempScale.FAHRENHEIT);

 temp.display();

CHAPTER 9 Constructing New Objects 247

 temp = new TemperatureNice(32.0);

 temp.display();

 temp = new TemperatureNice(TempScale.CELSIUS);

 temp.display();

 temp = new TemperatureNice(2.73, TempScale.KELVIN);

 temp.display();

 }

}

The code in Listing 9-6 is much like its cousin code in Listing 9-3. The big differ-
ences are as follows:

 » Listing 9-6 creates instances of the TemperatureNice class. That is, Listing 9-6
calls constructors from the TemperatureNice class, not the
Temperature class.

 » Listing 9-6 takes advantage of the display method in the TemperatureNice
class. So the code in Listing 9-6 is much tidier than its counterpart in Listing 9-3.

A run of Listing 9-6 looks exactly like a run of the code in Listing 9-3 — it just
gets to the finish line in a far more elegant fashion. (The run is shown previously
in Figure 9-1.)

The default constructor
The main message in the previous section is that subclasses don’t inherit con-
structors. So what gives with all the listings over in Chapter 8? In Listing 8-6, a
statement says

FullTimeEmployee ftEmployee = new FullTimeEmployee();

But, here’s the problem: The code defining FullTimeEmployee (refer to
Listing 8-3) doesn’t seem to have any constructors declared inside it. So, in
 Listing 8-6, how can you possibly call the FullTimeEmployee constructor?

Here’s what’s going on. When you create a subclass and don’t put any explicit
constructor declarations in your code, Java creates one constructor for you. It’s
called a default constructor. If you’re creating the public FullTimeEmployee
 subclass, the default constructor looks like the one in Listing 9-7.

248 PART 3 Working with the Big Picture: Object-Oriented Programming

LISTING 9-7: A Default Constructor

public FullTimeEmployee() {

 super();

}

The constructor in Listing 9-7 takes no parameters, and its one statement calls
the constructor of whatever class you’re extending. (Woe be to you if the class that
you’re extending doesn’t have a parameterless constructor.)

You’ve just read about default constructors, but watch out! Notice one thing that
this talk about default constructors doesn’t say: It doesn’t say that you always get
a default constructor. In particular, if you create a subclass and define any con-
structors yourself, Java doesn’t add a default constructor for the subclass (and the
subclass doesn’t inherit any constructors, either).

So how can this trip you up? Listing 9-8 has a copy of the code from Listing 8-3,
but with one constructor added to it. Take a look at this modified version of the
FullTimeEmployee code.

LISTING 9-8: Look, I Have a Constructor!

public class FullTimeEmployee extends Employee {

 private double weeklySalary;

 private double benefitDeduction;

 public FullTimeEmployee(double weeklySalary) {

 this.weeklySalary = weeklySalary;

 }

 public void setWeeklySalary(double weeklySalaryIn) {

 weeklySalary = weeklySalaryIn;

 }

 public double getWeeklySalary() {

 return weeklySalary;

 }

 public void setBenefitDeduction(double benefitDedIn) {

 benefitDeduction = benefitDedIn;

 }

 public double getBenefitDeduction() {

 return benefitDeduction;

 }

CHAPTER 9 Constructing New Objects 249

 public double findPaymentAmount() {

 return weeklySalary - benefitDeduction;

 }

}

If you use the FullTimeEmployee code in Listing 9-8, a line like the following
doesn’t work:

FullTimeEmployee ftEmployee = new FullTimeEmployee();

It doesn’t work because, having declared a FullTimeEmployee constructor that
takes one double parameter, you no longer get a default parameterless construc-
tor for free.

What do you do about this? If you declare any constructors, declare all construc-
tors that you’ll possibly need. Take the constructor in Listing 9-7 and add it to the
code in Listing 9-8. Then the call new FullTimeEmployee() starts working again.

Under certain circumstances, Java automatically adds an invisible call to a parent
class’s constructor at the top of a constructor body. This automatic addition of a
super call is a tricky bit of business that doesn’t appear often, so when it does
appear, it may seem quite mysterious. For more information, see this book’s web-
site (www.allmycode.com/JavaForDummies).

In this section, I have three (count ’em — three) things for you to try:

 » In a previous section, you create your own Student class. Create a subclass
that has a method named getString.

Like the display method in this chapter’s TemperatureNice class, the
getString method creates a nice-looking String representation of its object.
But unlike the TemperatureNice class’s display method, the getString
method doesn’t print that String representation on the screen. Instead, the
getString method simply returns that String representation as its result.

In a way, a getString method is much more versatile than a display method.
With a display method, all you can do is show a String representation on the
screen. But with a getString method, you can create a String representation
and then do whatever you want with it.

Create a separate class that creates some instances of your new subclass and
puts their getString methods to good use.

http://www.allmycode.com/JavaForDummies

250 PART 3 Working with the Big Picture: Object-Oriented Programming

 » In a previous section, you create your own AirplaneFlight class. Create a
subclass that has a method named duration. The duration method, which
has no parameters, returns the amount of time between the flight’s departure
time and arrival time.

To find the number of hours between two LocalTime objects (such as
twoFifteen and currentTime), execute

long hours = ChronoUnit.HOURS.between(twoFifteen, currentTime);

To find the number of minutes between two LocalTime objects (such as
twoFifteen and currentTime), execute

long minutes = ChronoUnit.MINUTES.between(twoFifteen, currentTime);

 » Create a new TemperatureEvenNicer class — a subclass of this section’s
TemperatureNice class. The TemperatureEvenNicer class has a convertTo
method. If the variable temp refers to a Fahrenheit temperature and Java
executes

temp.convertTo(TempScale.CELSIUS);

then the temp object changes to a Celsius temperature, with the number
converted appropriately. The same kind of thing happens if Java executes

temp.convertTo(TempScale.FAHRENHEIT);

with temp already referring to a Celsius temperature.

A Constructor That Does More
Here’s a quote from somewhere near the start of this chapter: “And what if you’re
interested in doing more than filling fields? Perhaps, when the computer creates
a new object, you have a whole list of jobs for the computer to carry out.” Okay,
what if?

This section’s example has a constructor that does more than just assign values to
fields. The example is in Listings 9-9 and 9-10. The result of running the exam-
ple’s code is shown in Figure 9-3.

CHAPTER 9 Constructing New Objects 251

LISTING 9-9: Defining a Frame

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JButton;

@SuppressWarnings("serial")

public class SimpleFrame extends JFrame {

 public SimpleFrame() {

 setTitle("Don't click the button!");

 setLayout(new FlowLayout());

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 add(new JButton("Panic"));

 setSize(300, 100);

 setVisible(true);

 }

}

LISTING 9-10: Displaying a Frame

public class ShowAFrame {

 public static void main(String args[]) {

 new SimpleFrame();

 }

}

Like my DummiesFrame examples, the code in Listings 9-9 and 9-10 displays a
window on the computer screen. But unlike my DummiesFrame examples, all the
method calls in Listings 9-9 and 9-10 refer to methods in Java’s standard API
(Application Programming Interface).

To find my DummiesFrame examples, refer to Chapter 7.

The code in Listing 9-9 contains lots of names that are probably unfamiliar to
you — names from Java’s API. When I was first becoming acquainted with Java,
I foolishly believed that knowing Java meant remembering all these names. Quite
the contrary: These names are just carry-on baggage. The real Java is the way the
language implements object-oriented concepts.

FIGURE 9-3:
Don’t panic.

252 PART 3 Working with the Big Picture: Object-Oriented Programming

PACKAGES AND IMPORT DECLARATIONS
Java has a feature that lets you lump classes into groups of classes. Each lump of classes
is called a package. In the Java world, programmers customarily give these packages
long, dot-filled names. For instance, because I’ve registered the domain name allmycode.
com, I may name a package com.allmycode.utils.textUtils. The Java API is actu-
ally a big collection of packages. The API has packages with names like java.lang,
java.util, java.awt, and javax.swing.

With this information about packages, I can clear up some of the confusion about
import declarations. Any import declaration that doesn’t use the word static must
start with the name of a package and must end with either of the following:

• The name of a class within that package

• An asterisk (indicating all classes within that package)

For example, the declaration

import java.util.Scanner;

is valid because java.util is the name of a package in the Java API, and Scanner is the
name of a class in the java.util package. The dotted name java.util.Scanner is
called the fully qualified name of the Scanner class. A class’s fully qualified name
includes the name of the package in which the class is defined. (You can find out all this
stuff about java.util and Scanner by reading Java’s API documentation. For tips on
reading the documentation, see Chapter 3 and this book’s website.)

Here’s another example. The declaration

import javax.swing.*;

is valid because javax.swing is the name of a package in the Java API, and the asterisk
refers to all classes in the javax.swing package. With this import declaration at the
top of your Java code, you can use abbreviated names for classes in the javax.swing
package — names like JFrame, JButton, JMenuBar, JCheckBox, and many others.

Here’s one more example. A line like

import javax.*; //Bad!!

is not a valid import declaration. The Java API has no package with the one-word name
javax. You may think that this line allows you to abbreviate all names beginning with
javax (names like javax.swing.JFrame, and javax.sound.midi), but that’s not the
way the import declaration works. Because javax isn’t the name of a package, the line
import javax.* just angers the Java compiler.

CHAPTER 9 Constructing New Objects 253

Anyway, Listing 9-10’s main method has only one statement: a call to the con-
structor in the SimpleFrame class. Notice how the object that this call creates isn’t
even assigned to a variable. That’s okay because the code doesn’t need to refer to
the object anywhere else.

Up in the SimpleFrame class, there’s only one constructor declaration. Far from
just setting variables’ values, this constructor calls method after method from the
Java API.

All the methods called in the SimpleFrame class’s constructor come from the
 parent class, JFrame. The JFrame class lives in the javax.swing package. This
package and another package, java.awt, have classes that help you put windows,
images, drawings, and other gizmos on a computer screen. (In the java.awt
package, the letters awt stand for abstract windowing toolkit.)

For a little gossip about the notion of a Java package, see the nearby sidebar,
“Packages and import declarations.” For lots of gossip about the notion of a Java
package, see Chapter 14.

In the Java API, what people normally call a window is an instance of the javax.
swing.JFrame class.

Classes and methods from the Java API
Looking at Figure 9-3, you can probably tell that an instance of the SimpleFrame
class doesn’t do much. The frame has only one button, and when you click the
button, nothing happens. I made the frame this way to keep the example from
becoming too complicated. Even so, the code in Listing 9-9 uses several API
classes and methods. The setTitle, setLayout, setDefaultCloseOperation,
add, setSize, and setVisible methods all belong to the javax.swing.JFrame
class. Here’s a list of names used in the code:

 » setTitle: Calling setTitle puts words in the frame’s title bar. (The new
SimpleFrame object is calling its own setTitle method.)

 » FlowLayout: An instance of the FlowLayout class positions objects on the
frame in a centered, typewriter fashion. Because the frame in Figure 9-3 has
only one button on it, that button is centered near the top of the frame. If the
frame had eight buttons, five of them may be lined up in a row across the top
of the frame and the remaining three would be centered along a second row.

 » setLayout: Calling setLayout puts the new FlowLayout object in charge of
arranging components, such as buttons, on the frame. (The new SimpleFrame
object is calling its own setLayout method.)

254 PART 3 Working with the Big Picture: Object-Oriented Programming

 » setDefaultCloseOperation: Calling setDefaultCloseOperation tells Java
what to do when you click the little × in the frame’s upper-right corner. (On a
Mac, you click the little red circle in the frame’s upper-left corner.) Without this
method call, the frame itself disappears, but the Java Virtual Machine (JVM)
keeps running. To stop your program’s run, you have to perform one more
step. (You may have to look for a Terminate option in Eclipse, IntelliJ IDEA, or
NetBeans.)

Calling setDefaultCloseOperation(EXIT_ON_CLOSE) tells Java to shut itself
down when you click the × in the frame’s upper-right corner. The alternatives
to EXIT_ON_CLOSE are HIDE_ON_CLOSE, DISPOSE_ON_CLOSE, and, my
personal favorite, DO_NOTHING_ON_CLOSE. Use one of these alternatives when
your program has more work to do after the user closes your frame.

 » JButton: The JButton class lives in the javax.swing package. One of the
class’s constructors takes a String instance (such as "Panic") for its
parameter. Calling this constructor makes that String instance into the label
on the face of the new button.

 » add: The new SimpleFrame object calls its add method. Calling the add
method places the button on the object’s surface (in this case, the surface of
the frame).

 » setSize: The frame becomes 300 pixels wide and 100 pixels tall. (In the
javax.swing package, whenever you specify two dimension numbers, the
width number always comes before the height number.)

 » setVisible: When it’s first created, a new frame is invisible. But when the
new frame calls setVisible(true), the frame appears on your computer
screen.

The SuppressWarnings annotation
Chapter 8 introduces the annotation — extra code that provides useful informa-
tion about the nature of your program. In particular, Chapter 8 describes the
Override annotation.

In this chapter, Listing 9-9 introduces another type of annotation: the Suppress
Warnings annotation. When you use a SuppressWarnings annotation, you tell
Java not to remind you that your program contains certain questionable code. In
Listing 9-9, the line @SuppressWarnings("serial") tells Java not to remind you
that you’ve omitted something called a serialVersionUID field. In other words,
the SuppressWarnings annotation tells Java not to display a warning like the one
in Figure 9-4.

CHAPTER 9 Constructing New Objects 255

“And what,” you ask, “is a serialVersionUID field?” It’s something having to
do with extending the JFrame class — something that you don’t care about. Not
having a serialVersionUID field generates a warning, not an error. So live dan-
gerously! Just suppress the warning (with the annotation in Listing 9-9) and
don’t worry about serialVersionUID fields.

 » In JShell, type the following sequence of declarations and statements. What
happens? Why?

jshell> import javax.swing.JFrame

jshell> JFrame frame

jshell> frame.setSize(100, 100)

jshell> frame = new JFrame()

jshell> frame.setSize(100, 100)

jshell> frame.setVisible(true)

 » In Listing 9-9, change the statement

setLayout(new FlowLayout());

to

setLayout(new BorderLayout());

What difference does this change make when you run the program?

FIGURE 9-4:
Without a
Suppress
Warnings

annotation,
Java warns you

about a missing
serialVersion

UID field.

4Smart Java
Techniques

IN THIS PART . . .

Decide where declarations belong in your Java program.

Deal with bunches of things (bunches of rooms, bunches
of sales, and even bunches of bunches).

Fully embrace Java’s object-oriented features.

Create a windowed app and respond to mouse clicks.

Talk to your favorite database.

CHAPTER 10 Putting Variables and Methods Where They Belong 259

IN THIS CHAPTER

 » Making something belong to an
entire class

 » Putting variables inside and outside
methods

 » Improving your batting average

Putting Variables and
Methods Where They
Belong

Hello, again. You’re listening to radio station WWW, and I’m your host, Sam
Burd. It’s the start again of the big baseball season, and today station
WWW brought you live coverage of the Hankees-versus-Socks game. At

this moment, I’m awaiting news of the game’s final score.

If you remember from earlier this afternoon, the Socks looked like they were going
to take those Hankees to the cleaners. Then, the Hankees were belting ball after
ball, giving the Socks a run for their money. Those Socks! I’m glad I wasn’t in
their shoes.

Anyway, as the game went on, the Socks pulled themselves up. Now the Socks are
nose-to-nose with the Hankees. We’ll get the final score in a minute, but first, a
few reminders. Stay tuned after this broadcast for the big Jersey’s game. And don’t
forget to tune in next week when the Cleveland Gowns play the Bermuda Shorts.

Okay, here’s the final score. Which team has the upper hand? Which team will
come out a head? And the winner is . . . oh, no — it’s a tie!

Chapter 10

260 PART 4 Smart Java Techniques

Defining a Class (What It Means
to Be a Baseball Player)

As far as I’m concerned, a baseball player has a name and a batting average.
 Listing 10-1 puts my feeling about this into Java program form.

LISTING 10-1: The Player Class

import java.text.DecimalFormat;

public class Player {

 private String name;

 private double average;

 public Player(String name, double average) {

 this.name = name;

 this.average = average;

 }

 public String getName() {

 return name;

 }

 public double getAverage() {

 return average;

 }

 public String getAverageString() {

 DecimalFormat decFormat = new DecimalFormat();

 decFormat.setMaximumIntegerDigits(0);

 decFormat.setMaximumFractionDigits(3);

 decFormat.setMinimumFractionDigits(3);

 return decFormat.format(average);

 }

}

Here I go, picking apart the code in Listing 10-1. Luckily, earlier chapters cover
lots of stuff in this code. The code defines what it means to be an instance of the
Player class. Here’s what’s in the code:

 » Declarations of the fields name and average: For bedtime reading about
field declarations, see Chapter 7.

 » A constructor to make new instances of the Player class: For the
lowdown on constructors, see Chapter 9.

CHAPTER 10 Putting Variables and Methods Where They Belong 261

 » Getter methods for the fields name and average: For chitchat about
accessor methods (that is, setter and getter methods), see Chapter 7.

 » A method that returns the player’s batting average in String form: For
the good word about methods, see Chapter 7. (I put a lot of good stuff in
Chapter 7, didn’t I?)

Another way to beautify your numbers
The getAverageString method in Listing 10-1 takes the value from the average
field (a player’s batting average), converts that value (normally of type double)
into a String, and then sends that String value right back to the method caller.
The use of DecimalFormat, which comes right from the Java API (Application Pro-
gramming Interface), ensures that the String value looks like a baseball player’s
batting average. According to the decFormat.setMaximum ... and decFormat.
setMinimum ... method calls, the String value has no digits to the left of the
decimal point and has exactly three digits to the right of the decimal point.

Java’s DecimalFormat class can be quite handy. For example, to display the values
345 and –345 in an accounting-friendly format, you can use the following code:

DecimalFormat decFormat = new DecimalFormat();

decFormat.setMinimumFractionDigits(2);

decFormat.setNegativePrefix("(");

decFormat.setNegativeSuffix(")");

System.out.println(decFormat.format(345));

System.out.println(decFormat.format(-345));

In this little example’s format string, everything before the semicolon dictates the
way positive numbers are displayed, and everything after the semicolon deter-
mines the way negative numbers are displayed. So, with this format, the numbers
345 and –345 appear as follows:

345.00

(345.00)

To discover some other tricks with numbers, visit the DecimalFormat page of
Java’s API documentation (https://docs.oracle.com/javase/8/docs/api/
java/text/DecimalFormat.html).

Using the Player class
Listings 10-2 and 10-3 have code that uses the Player class — the class that’s
defined back in Listing 10-1.

https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

262 PART 4 Smart Java Techniques

LISTING 10-2: Using the Player Class

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import javax.swing.JFrame;

import javax.swing.JLabel;

import java.awt.GridLayout;

@SuppressWarnings("serial")

public class TeamFrame extends JFrame {

 public TeamFrame() throws IOException {

 Player player;

 Scanner hankeesData = new Scanner(new File("Hankees.txt"));

 for (int num = 1; num <= 9; num++) {
 player = new Player(hankeesData.nextLine(), hankeesData.nextDouble());

 hankeesData.nextLine();

 addPlayerInfo(player);

 }

 setTitle("The Hankees");

 setLayout(new GridLayout(9, 2, 20, 3));

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 pack();

 setVisible(true);

 hankeesData.close();

 }

 void addPlayerInfo(Player player) {

 add(new JLabel(" " + player.getName()));
 add(new JLabel(player.getAverageString()));

 }

}

LISTING 10-3: Displaying a Frame

import java.io.IOException;

public class ShowTeamFrame {

 public static void main(String args[]) throws IOException {

 new TeamFrame();

 }

}

CHAPTER 10 Putting Variables and Methods Where They Belong 263

For a run of the code in Listings 10-1, 10-2, and 10-3, see Figure 10-1.

To run this program yourself, you need the Hankees.txt file. This file contains
data on your favorite baseball players. (See Figure 10-2.)

You don’t have to create your own Hankees.txt file. The stuff that you download
from this book’s website comes with a Hankees.txt file, as shown in Figure 10-2.
(Visit www.allmycode.com/JavaForDummies.)

You may live in a country where the value of π is approximately 3,14159 (with a
comma) instead of 3.14159 (with a period). If you do, the file shown in Figure 10-2
won’t work for you. The program will crash with an InputMismatchException. To
run this section’s example, you have to change the periods in the Hankees.txt file
into commas. Alternatively, you can add a statement such as Locale.
setDefault(Locale.US) to your code. For details, see Chapter 8.

You must have the Hankees.txt file in a certain place on your hard drive. If you’re
using Eclipse, that “certain place” is a project directory within your Eclipse work-
space. On the other hand, if you’re running Java from the command line, that
“place” may be the directory that contains the Listing 10-3 code. One way or
another, you can’t get away with not having the Hankees.txt file in the right
place on your hard drive. If you don’t have Hankees.txt in the right place, then

FIGURE 10-1:
Would you

bet money on
these people?

FIGURE 10-2:
What a team!

http://www.allmycode.com/JavaForDummies

264 PART 4 Smart Java Techniques

when you try to run this section’s example, you get an unpleasant FileNotFound
Exception message.

You can download stuff from this book’s website, and get instructions for opening
the book’s examples in your favorite IDE (Eclipse, NetBeans, or IntelliJ IDEA).
When you open this chapter’s 10-01 project, the Hankees.txt file is exactly where
it needs to be. You don’t have to worry about putting the file where it belongs.

If you create this section’s example from scratch, you have to think about the
 correct location of the Hankees.txt file. In that case, deciding where to put the
Hankees.txt file depends on your computer. To read about all these topics, visit
this book’s website (www.allmycode.com/JavaForDummies).

For this section’s code to work correctly, you must have a line break after the last
.212 in Figure 10-2. For details about line breaks, see Chapter 8.

One class; nine objects
The code in Listing 10-2 calls the Player constructor nine times. This means that
the code creates nine instances of the Player class. The first time through the
loop, the code creates an instance with the name Barry Burd. The second time
through the loop, the code abandons the Barry Burd instance and creates another
instance with name Harriet Ritter. The third time through, the code abandons
poor Harriet Ritter and creates an instance for Weelie J. Katz. The code has
only one instance at a time but, all in all, the code creates nine instances.

Each Player instance has its own name and average fields. Each instance also
has its own Player constructor and its own getName, getAverage, and get
AverageString methods. Look at Figure 10-3 and think of the Player class with
its nine incarnations.

FIGURE 10-3:
A class and
its objects.

http://www.allmycode.com/JavaForDummies

CHAPTER 10 Putting Variables and Methods Where They Belong 265

Don’t get all GUI on me
The code in Listing 10-2 uses several names from the Java API. Some of these
names are explained in Chapter 9. Others are explained right here:

 » JLabel: A JLabel is an object with some text in it. One way to display text
inside the frame is to add an instance of the JLabel class to the frame.

In Listing 10-2, the addPlayerInfo method is called nine times, once for each
player on the team. Each time addPlayerInfo is called, the method adds two
new JLabel objects to the frame. The text for each JLabel object comes from
a player object’s getter method.

 » GridLayout: A GridLayout arranges things in evenly spaced rows and
columns. This constructor for the GridLayout class takes two parameters: the
number of rows and the number of columns.

In Listing 10-2, the call to the GridLayout constructor takes parameters (9, 2,
20, 3). So in Figure 10-1, the display has nine rows (one for each player) and
two columns (one for a name and another for an average). The horizontal gap
between the two columns is 20 pixels wide, and the vertical gap between any
two rows is 3 pixels tall.

 » pack: When you pack a frame, you set the frame’s size. That’s the size the
frame has when it appears on your computer screen. Packing a frame
shrink-wraps the frame around whatever objects you’ve added inside the
frame.

In Listing 10-2, by the time you’ve reached the call to pack, you’ve already
called addPlayerInfo nine times and added 18 labels to the frame. In
executing the pack method, the computer picks a nice size for each label,
given whatever text you’ve put inside the label. Then the computer picks a nice
size for the whole frame, given that the frame has these 18 labels inside it.

When you plop stuff onto frames, you have quite a bit of leeway with the order in
which you do things. For instance, you can set the layout before or after you’ve
added labels and other stuff to the frame. If you call setLayout and then add
labels, the labels appear in nice, orderly positions on the frame. If you reverse this
order (add labels and then call setLayout), the calling of setLayout rearranges
the labels in a nice, orderly fashion. It works fine either way.

In setting up a frame, the one thing that you shouldn’t do is violate the following
sequence:

Add things to the frame, then

pack();

setVisible(true);

266 PART 4 Smart Java Techniques

If you call pack and then add more things to the frame, the pack method doesn’t
take into consideration the more recent things that you’ve added. If you call
setVisible before you add things or call pack, the user sees the frame as it’s
being constructed. Finally, if you forget to set the frame’s size (by calling pack or
another sizing method), the frame that you see looks like the one in Figure 10-4.
(Normally, I wouldn’t show you an anomalous run like the one in Figure 10-4, but
I’ve made the mistake so many times that I feel as if this puny frame is an old
friend of mine.)

Tossing an exception from
method to method
Chapter 8 introduces input from a disk file, and along with that topic comes the
notion of an exception. When you tinker with a disk file, you need to acknowledge
the possibility of raising an IOException. That’s the lesson from Chapter 8, and
that’s why the constructor in Listing 10-2 has a throws IOException clause.

But what about the main method in Listing 10-3? With no apparent reference to
disk files in this main method, why does the method need its own throws
IOException clause? Well, an exception is a hot potato. If you have one, you either
have to eat it (as you can see in Chapter 13) or use a throws clause to toss it to
someone else. If you toss an exception with a throws clause, someone else is stuck
with the exception just the way you were.

The constructor in Listing 10-2 throws an IOException, but to whom is
this exception thrown? Who in this chain of code becomes the bearer of responsi-
bility for the problematic IOException? Well, who called the constructor in
Listing 10-2? It was the main method in Listing 10-3 — that’s who called the
TeamFrame constructor. Because the TeamFrame constructor throws its hot potato
to the main method in Listing 10-3, the main method has to deal with it. As shown
in Listing 10-3, the main method deals with it by tossing the IOException again
(by having a throws IOException clause of its own). That’s how the throws
clause works in Java programs.

If a method calls another method and the called method has a throws clause, the
calling method must contain code that deals with the exception. To find out more
about dealing with exceptions, read Chapter 13.

FIGURE 10-4:
A shrunken

frame.

CHAPTER 10 Putting Variables and Methods Where They Belong 267

At this point in the book, the astute For Dummies reader may pose a follow-up
question or two. “When a main method has a throws clause, someone else has to
deal with the exception in that throws clause. But who called the main method?
Who deals with the IOException in the throws clause of Listing 10-3?” The
answer is that the Java Virtual Machine (or JVM, the thing that runs all your Java
code) called the main method. So the JVM takes care of the IOException in
 Listing 10-3. If the program has any trouble reading the Hankees.txt file, the
responsibility ultimately falls on the JVM. The JVM takes care of the situation by
displaying an error message and then ending the run of your program. How
convenient!

Would you like some practice with the material in this section? If so, try this:

 » The code in Listing 10-2 reads from a file named Hankees.txt. Delete that
Hankees.txt file from your computer’s hard drive, or temporarily move the
file to a different directory. Then try to run the program in Listings 10-1 to 10-3.
What horrible things happen when you do this?

 » A line of men’s clothing features shirts, pants, jackets, overcoats, neckties, and
shoes. Create an enum to represent the six kinds of items. Then create a
MensClothingItem class. Each instance of the class has a kind (one of the six
enum values), and a name (such as Casual Summer Design #7).

Write code to display a frame (like the frame in Figure 10-1). The frame has six
rows to describe one complete men’s wardrobe.

 » Create an enum to represent the suits in a deck of playing cards (CLUBS,
DIAMONDS, HEARTS, and SPADES). Create a PlayingCard class. Each playing
card has a number (from 1 to 13) and a suit. In the numbering scheme, 11
stands for a Jack, 12 stands for a Queen, and 13 stands for a King. Write code
that creates several cards and displays them on the screen (in either text-only
format or as a frame like the one in Figure 10-1).

Making Static (Finding the Team Average)
Thinking about the code in Listings 10-1 through 10-3, you decide that you want
to find the team’s overall batting average. Not a bad idea! The Hankees in
 Figure 10-1 have an average of about .106, so the team needs some intensive train-
ing. While the players are out practicing on the ball field, you have a philosophical
hurdle to overcome.

268 PART 4 Smart Java Techniques

In Listings 10-1 through 10-3, you have three classes: a Player class and two
other classes that help display data from the Player class. So in this class morass,
where do the variables storing your overall, team-average tally go?

 » It makes no sense to put tally variables in either of the displaying classes
(TeamFrame and ShowTeamFrame). After all, the tally has something-or-other
to do with players, teams, and baseball. The displaying classes are about
creating windows, not about playing baseball.

 » You’re uncomfortable putting an overall team average in an instance of the
Player class because an instance of the Player class represents just one
player on the team. What business does a single player have storing overall
team data? Sure, you could make the code work, but it wouldn’t be an elegant
solution to the problem.

Finally, you discover the keyword static. Anything that’s declared to be static
belongs to the whole class, not to any particular instance of the class. When you
create the static field, totalOfAverages, you create just one copy of the field.
This copy stays with the entire Player class. No matter how many instances of the
Player class you create — one, nine, or none — you have just one totalOf
Averages field. And, while you’re at it, you create other static fields (player
Count and decFormat) and static methods (findTeamAverage and findTeam
AverageString). To see what I mean, look at Figure 10-5.

Going along with your passion for subclasses, you put code for team-wide tallies
in a subclass of the Player class. The PlayerPlus subsclass code is shown in
Listing 10-4.

FIGURE 10-5:
Some static and
non-static fields

and methods.

CHAPTER 10 Putting Variables and Methods Where They Belong 269

LISTING 10-4: Creating a Team Batting Average

import java.text.DecimalFormat;

public class PlayerPlus extends Player {

 private static int playerCount = 0;

 private static double totalOfAverages = .000;

 private static DecimalFormat decFormat = new DecimalFormat();

 static {

 decFormat.setMaximumIntegerDigits(0);

 decFormat.setMaximumFractionDigits(3);

 decFormat.setMinimumFractionDigits(3);

 }

 public PlayerPlus(String name, double average) {

 super(name, average);

 playerCount++;
 totalOfAverages += average;
 }

 public static double findTeamAverage() {

 return totalOfAverages / playerCount;

 }

 public static String findTeamAverageString() {

 return decFormat.format(totalOfAverages / playerCount);

 }

}

Why is there so much static?
Maybe you’ve noticed — the code in Listing 10-4 is overflowing with the word
static. That’s because nearly everything in this code belongs to the entire
PlayerPlus class and not to individual instances of the class. That’s good because
something like playerCount (the number of players on the team) shouldn’t
belong to individual players, and having each PlayerPlus object keep track of its
own count would be silly. (“I know how many players I am. I’m just one player!”)
If you had nine individual playerCount fields, either each field would store the
number 1 (which is useless) or you would have nine different copies of the count,
which is wasteful and prone to error. By making playerCount static, you’re keep-
ing the playerCount in just one place, where it belongs.

The same kind of reasoning holds for the totalOfAverages. Eventually, the
totalOfAverages field will store the sum of the players’ batting averages. For all
nine members of the Hankees, this adds up to .956. It’s not until someone calls

270 PART 4 Smart Java Techniques

the findTeamAverage or findTeamAverageString method that the computer
actually finds the overall Hankee team batting average.

You also want the methods findTeamAverage and findTeamAverageString to be
static. Without the word static, there would be nine findTeamAverage methods —
one for each instance of the PlayerPlus class. This wouldn’t make much sense.
Each instance would have the code to calculate totalOfAverages / playerCount
on its own, and each of the nine calculations would yield the same answer.

In general, any task that all the instances have in common (and that yields the
same result for each instance) should be coded as a static method.

Constructors are never static.

Meet the static initializer
In Listing 10-4, the decFormat field is static. This makes sense because dec
Format makes totalOfAverages / playerCount look nice, and both fields in the
expression totalOfAverages / playerCount are static. Thinking more directly,
the code needs only one thing for formatting numbers. If you have several num-
bers to format, the same decFormat thing that belongs to the entire class can
format each number. Creating a decFormat for each player is not only inelegant,
but also wasteful.

But declaring decFormat to be static presents a little problem. To set up the for-
matting, you have to call methods like decFormat.setMaximumIntegerDigits(0).
You can’t just plop these method calls anywhere in the PlayerPlus class. For
example, the following code is bad, invalid, illegal, and otherwise un-Java-like:

// THIS IS BAD CODE:

public class PlayerPlus extends Player {

 private static DecimalFormat decFormat = new DecimalFormat();

 decFormat.setMaximumIntegerDigits(0); // Bad!

 decFormat.setMaximumFractionDigits(3); // Bad!

 decFormat.setfsMinimumFractionDigits(3); // Bad!

Look at the examples from previous chapters. In those examples, I never let a
method call just dangle on its own, the way I do in the bad, bad code. In this
 chapter, in Listing 10-1, I don’t call setMaximumIntegerDigits without putting
the method call inside the getAverageString method’s body. This no-dangling-
method-calls business isn’t an accident. Java’s rules restrict the places in the
code where you can issue calls to methods, and putting a lonely method call on its
own immediately inside a class definition is a big no-no.

CHAPTER 10 Putting Variables and Methods Where They Belong 271

In Listing 10-4, where can you put the necessary setMax and setMin calls? You
can put them inside the body of the findTeamAverageString method, much the
way I put them inside the getAverageString method in Listing 10-1. But putting
those method calls inside the findTeamAverageString method’s body might
defeat the purpose of having decFormat be static. After all, a programmer might
call findTeamAverageString several times, calling decFormat.setMaximum
IntegerDigits(0) each time. But that would be quite wasteful. The entire Player
Plus class has only one decFormat field, and that decFormat field’s
MaximumIntegerDigits value is always 0. Don’t keep setting MaximumInteger
Digits(0) over and over again.

The best alternative is to take the bad lines in this section’s bad code and put them
inside a static initializer. Then they become good lines inside good code. (See
 Listing 10-4.) A static initializer is a block that’s preceded by the word static.
Java executes the static initializer’s statements once for the entire class. That’s
exactly what you want for something called “static.”

Displaying the overall team average
You may be noticing a pattern. When you create code for a class, you generally
write two pieces of code. One piece of code defines the class, and the other piece of
code uses the class. (The ways to use a class include calling the class’s constructor,
referencing the class’s non-private fields, calling the class’s methods, and so on.)
Listing 10-4, shown previously, contains code that defines the PlayerPlus class,
and Listing 10-5 contains code that uses this PlayerPlus class.

LISTING 10-5: Using the Code from Listing 10-4

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import javax.swing.JFrame;

import javax.swing.JLabel;

import java.awt.GridLayout;

@SuppressWarnings("serial")

public class TeamFrame extends JFrame {

 public TeamFrame() throws IOException {

 PlayerPlus player;

 Scanner hankeesData = new Scanner(new File("Hankees.txt"));

 for (int num = 1; num <= 9; num++) {
 player =

(continued)

272 PART 4 Smart Java Techniques

 new PlayerPlus(hankeesData.nextLine(), hankeesData.nextDouble());

 hankeesData.nextLine();

 addPlayerInfo(player);

 }

 add(new JLabel());

 add(new JLabel(" ------"));

 add(new JLabel("Team Batting Average:"));

 add(new JLabel(PlayerPlus.findTeamAverageString()));

 setTitle("The Hankees");

 setLayout(new GridLayout(11, 2, 20, 3));

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 pack();

 setVisible(true);

 hankeesData.close();

 }

 void addPlayerInfo(PlayerPlus player) {

 add(new JLabel(" " + player.getName()));
 add(new JLabel(player.getAverageString()));

 }

}

To run the code in Listing 10-5, you need a class with a main method. The
ShowTeamFrame class in Listing 10-3 works just fine.

Figure 10-6 shows a run of the code from Listing 10-5. This run depends on the
availability of the Hankees.txt file from Figure 10-2. The code in Listing 10-5 is
almost an exact copy of the code from Listing 10-2. (So close is the copy that if I
could afford it, I’d sue myself for theft of intellectual property.) The only thing
new in Listing 10-5 is the stuff shown in bold.

FIGURE 10-6:
A run of the code

in Listing 10-5.

LISTING 10-5: (continued)

CHAPTER 10 Putting Variables and Methods Where They Belong 273

In Listing 10-5, the GridLayout has two extra rows: one row for spacing and
another row for the Hankee team’s average. Each of these rows has two Label
objects in it.

 » The spacing row has a blank label and a label with a dashed line. The
blank label is a placeholder. When you add components to a GridLayout,
the components are added row by row, starting at the left end of a row and
working toward the right end. Without this blank label, the dashed-line label
would appear at the left end of the row, under Hugh R. DaReader’s name.

 » The other row has a label displaying the words Team Batting Average, and
another label displaying the number .106. The method call that gets the
number .106 is interesting. The call looks like this:

PlayerPlus.findTeamAverageString()

Take a look at that method call. That call has the following form:

ClassName.methodName()

That’s new and different. In earlier chapters, I say that you normally preface a
method call with an object’s name, not a class’s name. So why do I use a class
name here? The answer: When you call a static method, you preface the
method’s name with the name of the class that contains the method. The
same holds true whenever you reference another class’s static field. This
makes sense. Remember: The whole class that defines a static field or
method owns that field or method. So, to refer to a static field or method,
you preface the field or method’s name with the class’s name.

When you’re referring to a static field or method, you can cheat and use an
object’s name in place of the class name. For instance, in Listing 10-5, with judi-
cious rearranging of some other statements, you can use the expression player.
findTeamAverageString().

The static keyword is yesterday’s news
This section makes a big noise about static fields and methods, but static
things have been part of the picture since early in this book. For example,
 Chapter 3 introduces System.out.println. The name System refers to a class,
and out is a static field in that class. That’s why, in Chapter 4 and beyond, I use
the static keyword to import the out field:

import static java.lang.System.out;

274 PART 4 Smart Java Techniques

In Java, static fields and methods show up all over the place. When they’re
declared in someone else’s code and you’re making use of them in your code, you
hardly ever have to worry about them. But when you’re declaring your own fields
and methods and must decide whether to make them static, you have to think a
little harder.

In this book, my first serious use of the word static is way back in Listing 3-1. I use
the static keyword as part of every main method (and lots of main methods are
in this book’s listings). So why does main have to be static? Well, remember that
non-static things belong to objects, not classes. If the main method isn’t static,
you can’t have a main method until you create an object. But, when you start up a
Java program, no objects have been created yet. The statements that are executed
in the main method start creating objects. So, if the main method isn’t static, you
have a big chicken-and-egg problem.

Could cause static; handle with care
When I first started writing Java programs, I had recurring dreams about get-
ting a certain error message. The message was non-static variable or method
cannot be referenced from a static context. So often did I see this message,
so thoroughly was I perplexed, that the memory of this message became burned
into my subconscious existence.

These days, I know why I got that error message so often. I can even make the
message occur if I want. But I still feel a little shiver whenever I see this message
on my screen.

Before you can understand why the message occurs and how to fix the problem,
you need to get some terminology under your belt. If a field or method isn’t
static, it’s called non-static. (Real surprising, hey?) Given that terminology, there
are at least two ways to make the dreaded message appear:

 » Put Class.nonstaticThing somewhere in your program.

 » Put nonstaticThing somewhere inside a static method.

In either case, you’re getting yourself into trouble. You’re taking something that
belongs to an object (the non-static thing) and putting it in a place where no
objects are in sight.

Take, for instance, the first of the two situations I just described. To see this
calamity in action, go back to Listing 10-5. Toward the end of the listing, change
player.getName() to Player.getName(). That does the trick. What could Player.
getName possibly mean? If anything, the expression Player.getName means

CHAPTER 10 Putting Variables and Methods Where They Belong 275

“call the getName method that belongs to the entire Player class.” But look back
at Listing 10-1. The getName method isn’t static. Each instance of the Player
(or PlayerPlus) class has a getName method. None of the getName methods
belongs to the entire class. So the call Player.getName doesn’t make any sense.
(Maybe the computer is pulling punches when it displays the inoffensive cannot
be referenced ... message. Perhaps a harsh, nonsensical expression message
would be more fitting.)

For a taste of the second situation (in the bullet list earlier in this section), go back
to Listing 10-4. While no one’s looking, quietly remove the word static from the
declaration of the decFormat field (near the top of the listing). This removal turns
decFormat into a non-static field. Suddenly, each player on the team has a sepa-
rate decFormat field.

Well, things are just hunky-dory until the computer reaches the findTeam
AverageString method. That static method has four decFormat.SuchAndSuch
statements in it. Once again, you’re forced to ask what a statement of this kind
could possibly mean. Method findTeamAverageString belongs to no instance
in particular. (The method is static, so the entire PlayerPlus class has one
findTeamAverageString method.) But with the way you’ve just butchered
the code, plain old decFormat without reference to a particular object has no
meaning. So again, you’re referencing the non-static field, decFormat, from
inside a static method’s context. For shame, for shame, for shame!

I don’t know about you, but I can always use some practice with static variables
and methods:

 » In a previous section, you create a class to represent items in a line of men’s
clothing. Create a subclass that includes the name of the designer (Dummies
House of Fashion), the color of the item, and the cost of the item.

The designer’s name will be static because all items in the line have the same
designer. The color can be a static field from Java’s own Color class. (See
https://docs.oracle.com/javase/8/docs/api/java/awt/Color.html.)

Write code to display a frame (like the frame in Figure 10-1). The frame has
eight rows. The first row displays the name of the designer. The next six rows
describe one complete men’s wardrobe. The last row shows the wardrobe’s
total cost.

 » In a previous section, you create a class to represent a playing card. Add a
static field to your PlayingCard class. The field keeps track of the number
of times the class’s constructor has been called, and thus has a count of the
number of playing cards.

https://docs.oracle.com/javase/8/docs/api/java/awt/Color.html

276 PART 4 Smart Java Techniques

 » What’s the output of the following code? Make some predictions, and then run
the code to see whether your predictions are correct:

import static java.lang.System.out;

public class Main {

 public static void main(String[] args) {

 out.println(“bigValue: “ + MutableInteger.bigValue);
 // out.println(“bigValue: “ + IntegerHolder.value); ILLEGAL

 MutableInteger holder1 = new MutableInteger(42);

 MutableInteger holder2 = new MutableInteger(7);

 out.println(“holder1: “ + holder1.value);
 out.println(“holder2: “ + holder2.value);

 out.println();

 holder1.value++;
 holder2.value++;
 MutableInteger.bigValue++;

 out.println(“bigValue: “ + MutableInteger.bigValue);
 out.println(“holder1: “ + holder1.value);
 out.println(“holder2: “ + holder2.value);

 out.println();

 holder1.bigValue++;
 out.println(“bigValue according to holder1: “ + holder1.bigValue);
 out.println(“bigValue according to holder2: “ + holder2.bigValue);
 }

}

class MutableInteger {

 int value;

 static int bigValue = 1_000_000;

 public MutableInteger(int value) {

 this.value = value;

 }

}

CHAPTER 10 Putting Variables and Methods Where They Belong 277

Experiments with Variables
One summer during my college days, I was sitting on the front porch, loafing
around, talking with someone I’d just met. I think her name was Janine. “Where
are you from?” I asked. “Mars,” she answered. She paused to see whether I’d ask
a follow-up question.

As it turned out, Janine was from Mars, Pennsylvania, a small town about 20 miles
north of Pittsburgh. Okay, so what’s my point? The point is that the meaning of a
name depends on the context. If you’re just north of Pittsburgh and ask, “How do
I get to Mars from here?” you may get a sensible, nonchalant answer. But if you
ask the same question standing on a street corner in Manhattan, you’ll probably
arouse some suspicion. (Okay, knowing Manhattan, people would probably just
ignore you.)

Of course, the people who live in Mars, Pennsylvania, are very much aware that
their town has an oddball name. Fond memories of teenage years at Mars High
School don’t prevent a person from knowing about the big red planet. On a clear
evening in August, you can still have the following conversation with one of the
local residents:

You: How do I get to Mars?

Local resident: You’re in Mars, pal. What particular part of Mars are you looking for?

You: No, I don’t mean Mars, Pennsylvania. I mean the planet Mars.

Local resident: Oh, the planet! Well, then, catch the 8:19 train leaving for Cape
Canaveral . . . No, wait — that’s the local train. That’d take you through West
Virginia. . . .

So the meaning of a name depends on where you’re using the name. Although
most English-speaking people think of Mars as a place with a carbon dioxide
atmosphere, some folks in Pennsylvania think about all the shopping they can do
in Mars. And those folks in Pennsylvania really have two meanings for the name
Mars. In Java, those names may look like this: Mars and planets.Mars.

Putting a variable in its place
Your first experiment is shown in Listings 10-6 and 10-7. The listings’ code
 highlights the difference between variables that are declared inside and outside
methods.

278 PART 4 Smart Java Techniques

LISTING 10-6: Two Meanings for Mars

import static java.lang.System.out;

class EnglishSpeakingWorld {

 String mars = " red planet";

 void visitPennsylvania() {

 out.println("visitPA is running:");

 String mars = " Janine's home town";

 out.println(mars);

 out.println(this.mars);

 }

}

LISTING 10-7: Calling the Code of Listing 10-6

import static java.lang.System.out;

public class GetGoing {

 public static void main(String args[]) {

 out.println("main is running:");

 EnglishSpeakingWorld e = new EnglishSpeakingWorld();

 //out.println(mars); cannot resolve symbol

 out.println(e.mars);

 e.visitPennsylvania();

 }

}

Figure 10-7 shows a run of the code in Listings 10-6 and 10-7. Figure 10-8 shows
a diagram of the code’s structure. In the GetGoing class, the main method cre-
ates an instance of the EnglishSpeakingWorld class. The variable e refers to the
new instance. The new instance is an object with a variable named mars inside it.
That mars variable has the value "red planet". The "red planet"mars variable
is a field.

FIGURE 10-7:
A run of the code

in Listings 10-6
and 10-7.

CHAPTER 10 Putting Variables and Methods Where They Belong 279

Another way to describe that mars field is to call it an instance variable because
that mars variable (the variable whose value is "red planet") belongs to an
instance of the EnglishSpeakingWorld class. In contrast, you can refer to static
fields (like the playerCount, totalOfAverages, and decFormat fields in
Listing 10-4) as class variables. For example, playerCount in Listing 10-4 is a
class variable because one copy of playerCount belongs to the entire PlayerPlus
class.

Now look at the main method in Listing 10-7. Inside the GetGoing class’s main
method, you aren’t permitted to write out.println(mars). In other words, a
bare-faced reference to any mars variable is a definite no-no. The mars variable
that I mention in the preceding paragraph belongs to the EnglishSpeakingWorld
object, not the GetGoing class.

However, inside the GetGoing class’s main method, you can certainly write e.mars
because the e variable refers to your EnglishSpeakingWorld object. That’s nice.

Near the bottom of the code, the visitPennsylvania method is called. When
you’re inside visitPennsylvania, you have another declaration of a mars vari-
able, whose value is "Janine's home town". This particular mars variable is
called a method-local variable because it belongs to just one method: the visit
Pennsylvania method.

FIGURE 10-8:
The structure of

the code in
Listings 10-6

and 10-7.

280 PART 4 Smart Java Techniques

Now you have two variables, both with the name mars. One mars variable, a field,
has the value "red planet". The other mars variable, a method-local variable, has
the value "Janine's home town". In the code, when you use the word mars, to
which of the two variables are you referring?

The answer is, when you’re visiting Pennsylvania, the variable with value
"Janine's home town" wins. When in Pennsylvania, think the way the Pennsyl-
vanians think. When you’re executing code inside the visitPennsylvania
method, resolve any variable name conflicts by going with method-local
 variables — variables declared right inside the visitPennsylvania method.

What if you’re in Pennsylvania and need to refer to that 2-mooned celestial object?
More precisely, how does code inside the visitPennsylvania method refer to the
field with value "red planet"? The answer is, use this.mars. The word this
points to whatever object contains all this code (and not to any methods inside the
code). That object, an instance of the EnglishSpeakingWorld class, has a big, fat
mars field, and that field’s value is "red planet". So that’s how you can force code
to see outside the method it’s in — you use the Java keyword this.

For more information on the keyword this, see Chapter 9.

Telling a variable where to go
Years ago, when I lived in Milwaukee, Wisconsin, I made frequent use of the local
bank’s automatic teller machines. Machines of this kind were just beginning to
become standardized. The local teller machine system was named TYME, which
stood for Take Your Money Everywhere.

I remember traveling by car out to California. At one point, I got hungry and
stopped for a meal, but I was out of cash. So I asked a gas station attendant, “Do
you know where there’s a TYME machine around here?”

So you see, a name that works well in one place could work terribly, or not at all,
in another place. In Listings 10-8 and 10-9, I illustrate this point (with more than
just an anecdote about teller machines).

LISTING 10-8: Tale of Atomic City

import static java.lang.System.out;

class EnglishSpeakingWorld2 {

 String mars;

CHAPTER 10 Putting Variables and Methods Where They Belong 281

 void visitIdaho() {

 out.println("visitID is running:");

 mars = " red planet";

 String atomicCity = " Population: 25";

 out.println(mars);

 out.println(atomicCity);

 }

 void visitNewJersey() {

 out.println("visitNJ is running:");

 out.println(mars);

 //out.println(atomicCity); cannot resolve symbol

 }

}

LISTING 10-9: Calling the Code of Listing 10-8

public class GetGoing2 {

 public static void main(String args[]) {

 EnglishSpeakingWorld2 e = new EnglishSpeakingWorld2();

 e.visitIdaho();

 e.visitNewJersey();

 }

}

Figure 10-9 shows a run of the code in Listings 10-8 and 10-9. Figure 10-10 shows
a diagram of the code’s structure. The code for EnglishSpeakingWorld2 has two
variables. The mars variable, which isn’t declared inside a method, is a field. The
other variable, atomicCity, is a method-local variable and is declared inside
the visitIdaho method.

FIGURE 10-9:
A run of the code

in Listings 10-8
and 10-9.

282 PART 4 Smart Java Techniques

In Listing 10-8, notice where each variable can and can’t be used. When you try to
use the atomicCity variable inside the visitNewJersey method, you get an error
message. Literally, the message says cannot resolve symbol. Figuratively, the
message says, “Hey, buddy, Atomic City is in Idaho, not New Jersey.” Technically,
the message says that the method-local variable atomicCity is available only in
the visitIdaho method because that’s where the variable was declared.

Back inside the visitIdaho method, you’re free to use the atomicCity variable
as much as you want. After all, the atomicCity variable is declared inside the
visitIdaho method.

And what about Mars? Have you forgotten about your old friend, that lovely
80-degrees-below-0 planet? Well, both the visitIdaho and visitNewJersey
methods can access the mars variable. That’s because the mars variable is a field.
That is, the mars variable is declared in the code for the EnglishSpeakingWorld2
class but not inside any particular method. (In my stories about the names for
things, remember that people who live in both states, Idaho and New Jersey, have
heard of the planet Mars.)

The life cycle of the mars field has three separate steps:

 » When the EnglishSpeakingWorld2 class first flashes into existence, the
computer sees String mars and creates space for the mars field.

EnglishSpeakingWorld2

red planet

visitIdaho

Population: 25

visitNewJersey

mars (instance variable)

atomicCity
(method-local variable

FIGURE 10-10:
The structure of

the code in
Listings 10-8

and 10-9.

CHAPTER 10 Putting Variables and Methods Where They Belong 283

 » When the visitIdaho method is executed, the method assigns the value
"red planet" to the mars field. (The visitIdaho method also prints the
value of the mars field.)

 » When the visitNewJersey method is executed, the method prints the mars
value once again.

In this way, the mars field’s value is passed from one method to another.

Try out these programs. See what you think.

 » What’s the output of the following code? Why?

public class Main1 {

 static String name = "George";

 public static void main(String[] args) {

 System.out.println(name);

 String name = "Barry";

 System.out.println(name);

 }

}

 » What’s the output of the following code? Why?

public class Main2 {

 String name = "George";

 public static void main(String[] args) {

 new Main2();

 }

 Main2() {

 System.out.println(name);

 String name = "Barry";

 System.out.println(name);

 System.out.println(this.name);

 }

}

284 PART 4 Smart Java Techniques

 » What’s the output of the following code? Why?

public class Main3 {

 static String name = "George";

 public static void main(String[] args) {

 String name = "Barry";

 new OtherClass();

 }

}

class OtherClass {

 OtherClass() {

 String name = "Leonard";

 System.out.println(name);

 System.out.println(Main3.name);

 }

}

 » What’s the output of the following code? Why?

public class Main4 {

 String name = "George";

 public static void main(String[] args) {

 new Main4();

 }

 Main4() {

 String name = "Barry";

 new YetAnotherClass(this);

 }

}

class YetAnotherClass {

 YetAnotherClass(Main4 whoCreatedMe) {

 String name = "Leonard";

 System.out.println(name);

 // System.out.println(Main4.name); ILLEGAL

 System.out.println(whoCreatedMe.name);

 }

}

CHAPTER 10 Putting Variables and Methods Where They Belong 285

Passing Parameters
A method can communicate with another part of your Java program in several
ways. One way is through the method’s parameter list. Using a parameter list, you
pass on-the-fly information to a method as the method is being called.

Imagine that the information you pass to the method is stored in one of your
 program’s variables. What, if anything, does the method actually do with that
variable? The following sections present a few interesting case studies.

Pass by value
According to my web research, the town of Smackover, Arkansas, has 2,232 people
in it. But my research isn’t current. Just yesterday, Dora Kermongoos celebrated a
joyous occasion over at Smackover General Hospital — the birth of her healthy,
blue-eyed baby girl. (The girl weighs 7 pounds, 4 ounces, and is 21 inches tall.)
Now the town’s population has risen to 2,233.

Listing 10-10 has a very bad program in it. The program is supposed to add 1 to a
variable that stores Smackover’s population, but the program doesn’t work. Take
a look at Listing 10-10 and see why.

LISTING 10-10: This Program Doesn’t Work

public class TrackPopulation {

 public static void main(String args[]) {

 int smackoverARpop = 2232;

 birth(smackoverARpop);

 System.out.println(smackoverARpop);

 }

 static void birth(int cityPop) {

 cityPop++;
 }

}

When you run the program in Listing 10-10, the program displays the number
2,232 onscreen. After nine months of planning and anticipation and Dora’s whop-
ping seven hours in labor, the Kermongoos family’s baby girl wasn’t registered in
the system. What a shame!

286 PART 4 Smart Java Techniques

The improper use of parameter passing caused the problem. In Java, when you
pass a parameter that has one of the eight primitive types, that parameter is passed
by value.

For a review of Java’s eight primitive types, see Chapter 4.

Here’s what this means in plain English: Any changes that the method makes to
the value of its parameter don’t affect the values of variables back in the calling
code. In Listing 10-10, the birth method can apply the ++ operator to cityPop all
it wants — the application of ++ to the cityPop parameter has absolutely no effect
on the value of the smackoverARpop variable back in the main method.

Technically, what’s happening is the copying of a value. (See Figure 10-11.) When
the main method calls the birth method, the value stored in smackoverARpop
is copied to another memory location — a location reserved for the cityPop
parameter’s value. During the birth method’s execution, 1 is added to the
cityPop parameter. But the place where the original 2232 value was stored —
the memory location for the smackoverARpop variable — remains unaffected.

FIGURE 10-11:
Pass by value,

under the hood.

CHAPTER 10 Putting Variables and Methods Where They Belong 287

When you do parameter passing with any of the eight primitive types, the
 computer uses pass by value. The value stored in the calling code’s variable remains
unchanged. This happens even if the calling code’s variable and the called
 method’s parameter happen to have exactly the same name.

Returning a result
You must fix the problem that the code in Listing 10-10 poses. After all, a young
baby Kermongoos can’t go through life untracked. To record this baby’s existence,
you have to add 1 to the value of the smackoverARpop variable. You can do this in
plenty of ways, and the way presented in Listing 10-11 isn’t the simplest. Even so,
the way shown in Listing 10-11 illustrates a point: Returning a value from a
method call can be an acceptable alternative to parameter passing. Look at
 Listing 10-11 to see what I mean.

LISTING 10-11: This Program Works

public class TrackPopulation2 {

 public static void main(String args[]) {

 int smackoverARpop = 2232;

 smackoverARpop = birth(smackoverARpop);

 System.out.println(smackoverARpop);

 }

 static int birth(int cityPop) {

 return cityPop + 1;

 }

}

After running the code in Listing 10-11, the number you see on your computer
screen is the correct number, 2,233.

The code in Listing 10-11 has no new features in it (unless you call working correctly
a new feature). The most important idea in Listing 10-11 is the return statement,
which also appears in Chapter 7. Even so, Listing 10-11 presents a nice contrast to
the approach in Listing 10-10, which had to be discarded.

Pass by reference
In the previous section or two, I take great pains to emphasize a certain point —
that when a parameter has one of the eight primitive types, the parameter is

288 PART 4 Smart Java Techniques

passed by value. If you read this, you probably missed the emphasis on the param-
eter’s having one of the eight primitive types. The emphasis is needed because
passing objects (reference types) doesn’t quite work the same way.

When you pass an object to a method, the object is passed by reference. What this
means to you is that statements in the called method can change any values that
are stored in the object’s variables. Those changes do affect the values that are
seen by whatever code called the method. Listings 10-12 and 10-13 illustrate the
point.

LISTING 10-12: What Is a City?

class City {

 int population;

}

LISTING 10-13: Passing an Object to a Method

public class TrackPopulation3 {

 public static void main(String args[]) {

 City smackoverAR = new City();

 smackoverAR.population = 2232;

 birth(smackoverAR);

 System.out.println(smackoverAR.population);

 }

 static void birth(City aCity) {

 aCity.population++;

 }

}

When you run the code in Listings 10-12 and 10-13, the output that you get is the
number 2,233. That’s good because the code has things like ++ and the word birth
in it. The deal is, adding 1 to aCity.population inside the birth method actually
changes the value of smackoverAR.population, as it’s known in the main method.

To see how the birth method changes the value of smackoverAR.population,
look at Figure 10-12. When you pass an object to a method, the computer doesn’t
make a copy of the entire object. Instead, the computer makes a copy of a refer-
ence to that object. (Think of it the way it’s shown in Figure 10-12. The computer
makes a copy of an arrow that points to the object.)

CHAPTER 10 Putting Variables and Methods Where They Belong 289

In Figure 10-12, you see just one instance of the City class, with a population
variable inside it. Now keep your eye on that object as you read the following
steps:

1. Just before the birth method is called, the smackoverAR variable refers to that
object — the instance of the City class.

2. When the birth method is called and smackoverAR is passed to the birth
method’s aCity parameter, the computer copies the reference from
smackoverAR to aCity. Now aCity refers to that same object — the
instance of the City class.

3. When the statement aCity.population++ is executed inside the birth
method, the computer adds 1 to the object’s population field. Now the
program’s one and only City instance has 2233 stored in its population field.

4. The flow of execution goes back to the main method. The value of smackoverAR.
population is printed. But smackoverAR refers to that one instance of the City
class. So smackoverAR.population has the value 2233. The Kermongoos family
is so proud.

Returning an object from a method
Believe it or not, the previous sections on parameter passing left one nook and
cranny of Java methods unexplored. When you call a method, the method can

FIGURE 10-12:
Pass by

 reference,
under the hood.

290 PART 4 Smart Java Techniques

return something right back to the calling code. In previous chapters and sections,
I return primitive values, such as int values, or nothing (otherwise known as
void). In this section, I return a whole object. It’s an object of type City from
 Listing 10-12. The code that makes this happen is in Listing 10-14.

LISTING 10-14: Here, Have a City

public class TrackPopulation4 {

 public static void main(String args[]) {

 City smackoverAR = new City();

 smackoverAR.population = 2232;

 smackoverAR = doBirth(smackoverAR);

 System.out.println(smackoverAR.population);

 }

 static City doBirth(City aCity) {

 City myCity = new City();

 myCity.population = aCity.population + 1;
 return myCity;

 }

}

If you run the code in Listing 10-14, you get the number 2,233. That’s good. The
code works by telling the doBirth method to create another City instance. In the
new instance, the value of population is 2233. (See Figure 10-13.)

FIGURE 10-13:
The doBirth

method creates a
City instance.

CHAPTER 10 Putting Variables and Methods Where They Belong 291

After the doBirth method is executed, that City instance is returned to the main
method. Then, back in the main method, that instance (the one that doBirth
returns) is assigned to the smackoverAR variable. (See Figure 10-14.) Now
smackoverAR refers to a brand-new City instance — an instance whose popula-
tion is 2,233.

In Listing 10-14, notice the type consistency in the calling and returning of the
doBirth method:

 » The smackoverAR variable has type City. The smackoverAR variable is
passed to the aCity parameter, which is also of type City.

 » The myCity variable is of type City. The myCity variable is sent back in the
doBirth method’s return statement. That’s consistent, because the doBirth
method’s header begins with static City doBirth(blah, blah, blah ... —
a promise to return an object of type City.

 » The doBirth method returns an object of type City. Back in the main method,
the object that the call to doBirth returns is assigned to the smackoverAR
variable, and (you guessed it) the smackoverAR variable is of type City.

FIGURE 10-14:
The new City

instance is
assigned to the
smack overAR

variable.

292 PART 4 Smart Java Techniques

Aside from being quite harmonious, all this type agreement is absolutely neces-
sary. If you write a program in which your types don’t agree with one another, the
compiler spits out an unsympathetic incompatible types message.

Epilogue
Dora Kermongoos and her newborn baby daughter are safe, healthy, and resting
happily in their Smackover, Arkansas, home.

CHAPTER 11 Using Arrays to Juggle Values 293

IN THIS CHAPTER

 » Dealing with several values at once

 » Searching for things

 » Creating values as you get a program
running

Using Arrays to Juggle
Values

Welcome to the Java Motel! No haughty bellhops, no overpriced room
service, none of the usual silly puns. Just a clean double room that’s a
darn good value!

Getting Your Ducks All in a Row
The Java Motel, with its ten comfortable rooms, sits in a quiet place off the main
highway. Aside from a small, separate office, the motel is just one long row of
ground-floor rooms. Each room is easily accessible from the spacious front park-
ing lot.

Oddly enough, the motel’s rooms are numbered 0 through 9. I could say that the
numbering is a fluke — something to do with the builder’s original design plan.
But the truth is that starting with 0 makes the examples in this chapter easier to
write.

Chapter 11

294 PART 4 Smart Java Techniques

Anyway, you’re trying to keep track of the number of guests in each room. Because
you have ten rooms, you may think about declaring ten variables:

int guestsInRoomNum0, guestsInRoomNum1, guestsInRoomNum2,

 guestsInRoomNum3, guestsInRoomNum4, guestsInRoomNum5,

 guestsInRoomNum6, guestsInRoomNum7, guestsInRoomNum8,

 guestsInRoomNum9;

Doing it this way may seem a bit inefficient — but inefficiency isn’t the only thing
wrong with this code. Even more problematic is the fact that you can’t loop
through these variables. To read a value for each variable, you have to copy the
nextInt method ten times.

guestsInRoomNum0 = diskScanner.nextInt();

guestsInRoomNum1 = diskScanner.nextInt();

guestsInRoomNum2 = diskScanner.nextInt();

// ... and so on.

Surely a better way exists.

That better way involves an array. An array is a row of values, like the row of
rooms in a 1-floor motel. To picture the array, just picture the Java Motel:

 » First, picture the rooms, lined up next to one another.

 » Next, picture the same rooms with their front walls missing. Inside each room
you can see a certain number of guests.

 » If you can, forget that the two guests in Room 9 are putting piles of bills into a
big briefcase. Ignore the fact that the guests in Room 6 haven’t moved away
from the TV set in a day-and-a-half. Instead of all these details, see only
numbers. In each room, see a number representing the count of guests in
that room. (If free-form visualization isn’t your strong point, look at
Figure 11-1.)

In the lingo of this chapter, the entire row of rooms is called an array. Each room
in the array is called a component of the array (also known as an array element).
Each component has two numbers associated with it:

 » The room number (a number from 0 to 9), which is called an index of the array

 » A number of guests, which is a value stored in a component of the array

CHAPTER 11 Using Arrays to Juggle Values 295

Using an array saves you from all the repetitive nonsense in the sample code
shown at the beginning of this section. For instance, to declare an array with ten
values in it, you can write one fairly short statement:

int guests[] = new int[10];

If you’re especially verbose, you can expand this statement so that it becomes two
separate statements:

int guests[];

guests = new int[10];

In either of these code snippets, notice the use of the number 10. This number tells
the computer to make the guests array have ten components. Each component of
the array has a name of its own. The starting component is named guests[0], the
next is named guests[1], and so on. The last of the ten components is named
guests[9].

In creating an array, you always specify the number of components. The array’s
indices start with 0 and end with the number that’s one less than the total number
of components.

The snippets that I show you give you two ways to create an array. The first way
uses one line. The second way uses two lines. If you take the single-line route, you
can put that line inside or outside a method. The choice is yours. On the other
hand, if you use two separate lines, the second line, guests = new int[10],
should be inside a method.

FIGURE 11-1:
An abstract
snapshot of

rooms in the
Java Motel.

296 PART 4 Smart Java Techniques

In an array declaration, you can put the square brackets before or after the vari-
able name. In other words, you can write int guests[] or int[] guests. The
computer creates the same guests variable no matter which form you use.

Creating an array in two easy steps
Look again at the two lines that you can use to create an array:

int guests[];

guests = new int[10];

Each line serves its own distinct purpose:

 » int guests[]: This first line is a declaration. The declaration reserves the
array name (a name like guests) for use in the rest of the program. In the Java
Motel metaphor, this line says, “I plan to build a motel here and put a certain
number of guests in each room.” (See Figure 11-2.)

Never mind what the declaration int guests[] actually does. It’s more
important to notice what the declaration int guests[] doesn’t do. The
declaration doesn’t reserve ten memory locations. Indeed, a declaration like
int guests[] doesn’t really create an array. All the declaration does is set up
the guests variable. At that point in the code, the guests variable still doesn’t
refer to a real array. (In other words, the motel has a name, but the motel
hasn’t been built yet.)

 » guests = new int[10]: This second line is an assignment statement. The
assignment statement reserves space in the computer’s memory for ten int
values. In terms of real estate, this line says, “I’ve finally built the motel. Go
ahead and put guests in each room.” (Again, see Figure 11-2.)

FIGURE 11-2:
Two steps in

creating an array.

CHAPTER 11 Using Arrays to Juggle Values 297

Storing values
After you’ve created an array, you can put values into the array’s components. For
instance, you want to store the fact that Room 6 contains four guests. To put the
value 4 in the component with index 6, you write guests[6] = 4.

Now business starts to pick up. A big bus pulls up to the motel. On the side of the
bus is a sign that says Noah’s Ark. Out of the bus come 25 couples, each walking,
stomping, flying, hopping, or slithering to the motel’s small office. Only 10 of the
couples can stay at the Java Motel, but that’s okay because you can send the other
15 couples down the road to the old C-Side Resort and Motor Lodge.

Anyway, to register ten couples into the Java Motel, you put a couple (two guests)
in each of your ten rooms. Having created an array, you can take advantage of the
array’s indexing and write a for loop, like this:

for (int roomNum = 0; roomNum < 10; roomNum++) {
 guests[roomNum] = 2;

}

This loop takes the place of ten assignment statements. Notice how the loop’s
counter goes from 0 to 9. Compare this with Figure 11-2 and remember that the
indices of an array go from zero to one less than the number of components in the
array.

However, given the way the world works, your guests won’t always arrive in neat
pairs, and you’ll have to fill each room with a different number of guests. You
probably store information about rooms and guests in a database. If you do, you
can still loop through an array, gathering numbers of guests as you go. The code
to perform such a task may look like this:

resultset = statement.executeQuery("select GUESTS from RoomData");

for (int roomNum = 0; roomNum < 10; roomNum++) {
 resultset.next();

 guests[roomNum] = resultset.getInt("GUESTS");

}

But because this book doesn’t cover databases until Chapter 17, you may be better
off reading numbers of guests from a plain-text file. A sample file named
GuestList.txt is shown in Figure 11-3.

FIGURE 11-3:
The GuestList.

txt file.

298 PART 4 Smart Java Techniques

After you’ve made a file, you can call on the Scanner class to get values from the
file. The code is shown in Listing 11-1, and the resulting output is in Figure 11-4.

This book’s website (www.allmycode.com/JavaForDummies) has tips for readers
who need to create data files. This includes instructions for Windows, Linux, and
Macintosh environments.

LISTING 11-1: Filling an Array with Values

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

public class ShowGuests {

 public static void main(String args[]) throws IOException {

 int guests[] = new int[10];

 Scanner diskScanner = new Scanner(new File("GuestList.txt"));

 for(int roomNum = 0; roomNum < 10; roomNum++) {

 guests[roomNum] = diskScanner.nextInt();

 }

 out.println("Room\tGuests");

 for(int roomNum = 0; roomNum < 10; roomNum++) {

 out.print(roomNum);

 out.print("\t");

 out.println(guests[roomNum]);

 }

 diskScanner.close();

 }

}

FIGURE 11-4:
Running the code
from Listing 11-1.

http://www.allmycode.com/JavaForDummies

CHAPTER 11 Using Arrays to Juggle Values 299

The code in Listing 11-1 has two for loops: The first loop reads numbers of guests,
and the second loop writes numbers of guests.

Every array has a built-in length field. An array’s length is the number of compo-
nents in the array. So, in Listing 11-1, if you print the value of guests.length, you
get 10.

Tab stops and other special things
In Listing 11-1, some calls to print and println use the \t escape sequence. It’s
called an escape sequence because you escape from displaying the letter t on the
screen. Instead, the characters \t stand for a tab. The computer moves forward to
the next tab stop before printing any more characters. Java has a few of these
handy escape sequences. Some of them are shown in Table 11-1.

Using an array initializer
Besides what you see in Listing 11-1, you have another way to fill an array in Java:
with an array initializer. When you use an array initializer, you don’t even have to
tell the computer how many components the array has. The computer figures this
out for you.

Listing 11-2 shows a new version of the code to fill an array. The program’s output
is the same as the output of Listing 11-1. (It’s the stuff shown in Figure 11-4.) The
only difference between Listings 11-1 and 11-2 is the bold text in Listing 11-2. That
bold doodad is an array initializer.

TABLE 11-1 Escape Sequences
Sequence Meaning

\b backspace

\t horizontal tab

\n line feed

\f form feed

\r carriage return

\" double quote "

\' single quote '

\\ backslash \

300 PART 4 Smart Java Techniques

LISTING 11-2: Using an Array Initializer

import static java.lang.System.out;

public class ShowGuests {

 public static void main(String args[]) {

 int guests[] = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

 out.println("Room\tGuests");

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(roomNum);

 out.print("\t");

 out.println(guests[roomNum]);

 }

 }

}

An array initializer can contain expressions as well as literals. In plain English,
this means that you can put all kinds of things between the commas in the initial-
izer. For instance, an initializer like {1 + 3, keyboard.nextInt(), 2, 0, 2, 1,
4, 3, 0, 2} works just fine.

Use my DummiesFrame (from Chapter 7) to create a GUI program based on the
ideas in Listings 11-1 and 11-2. In your program, the frame has only one input row:
a Room number row. If the user types 3 in the Room number row and then clicks the
button, the program displays the number of guests in Room 3.

Stepping through an array with the
enhanced for loop
Java has an enhanced for loop — a for loop that doesn’t use counters or indices.
Listing 11-3 shows you how to do it.

The material in this section applies to Java 5.0 and later Java versions. But this
section’s material doesn’t work with older versions of Java — versions such as 1.3,
1.4, and so on. For a bit more about Java’s version numbers, see Chapter 2.

CHAPTER 11 Using Arrays to Juggle Values 301

LISTING 11-3: Get a Load o’ That for Loop!

import static java.lang.System.out;

public class ShowGuests {

 public static void main(String args[]) {

 int guests[] = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

 int roomNum = 0;

 out.println("Room\tGuests");

 for (int numGuests : guests) {

 out.print(roomNum++);
 out.print("\t");

 out.println(numGuests);

 }

 }

}

Listings 11-1 and 11-3 have the same output. It’s in Figure 11-4.

An enhanced for statement has three parts:

for (variable-type variable-name : range-of-values)

The first two parts are variable-type and variable-name. The loop in Listing 11-3
defines a variable named numGuests, and numGuests has type int. During each
loop iteration, the variable numGuests takes on a new value. Look at Figure 11-4 to
see these values. The initial value is 1. The next value is 4. After that comes 2. And
so on.

Where is the loop finding all these numbers? The answer lies in the loop’s range-
of-values. In Listing 11-3, the loop’s range-of-values is guests. So, during the ini-
tial loop iteration, the value of numGuests is guests[0] (which is 1). During the
next iteration, the value of numGuests is guests[1] (which is 4). After that comes
guests[2] (which is 2). And so on.

Java’s enhanced for loop requires a word of caution. Each time through the loop,
the variable that steps through the range of values stores a copy of the value in the
original range. The variable does not point to the range itself.

For example, if you add an assignment statement that changes the value of
numGuests in Listing 11-3, this statement has no effect on any of the values stored

302 PART 4 Smart Java Techniques

in the guests array. To drive this point home, imagine that business is bad and
I’ve filled my hotel’s guests array with zeros. Then I execute the following code:

for (int numGuests : guests) {

 numGuests += 1;

 out.print(numGuests + " ");
}

out.println();

for (int numGuests : guests) {

 out.print(numGuests + " ");
}

The numGuests variable takes on values stored in the guests array. But the
numGuests += 1 statement doesn’t change the values stored in this guests array.
The code’s output looks like this:

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

Write a program that stores five double values in an array and then displays the
average of the values in the array.

Searching
You’re sitting behind the desk at the Java Motel. Look! Here comes a party of
five. These people want a room, so you need software that checks whether a room
is vacant. If one is, the software modifies the GuestList.txt file (refer to
 Figure 11-3) by replacing the number 0 with the number 5. As luck would have it,
the software is on your hard drive. The software is shown in Listing 11-4.

LISTING 11-4: Do You Have a Room?

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import java.io.PrintStream;

public class FindVacancy {

 public static void main(String args[]) throws IOException {

CHAPTER 11 Using Arrays to Juggle Values 303

 int guests[] = new int[10];

 int roomNum;

 Scanner diskScanner = new Scanner(new File("GuestList.txt"));

 for (roomNum = 0; roomNum < 10; roomNum++) {
 guests[roomNum] = diskScanner.nextInt();

 }

 diskScanner.close();

 roomNum = 0;

 while (roomNum < 10 && guests[roomNum] != 0) {

 roomNum++;

 }

 if (roomNum == 10) {

 out.println("Sorry, no v cancy");

 } else {

 out.print("How many people for room ");

 out.print(roomNum);

 out.print("? ");

 Scanner keyboard = new Scanner(System.in);

 guests[roomNum] = keyboard.nextInt();

 keyboard.close();

 PrintStream listOut = new PrintStream("GuestList.txt");

 for (roomNum = 0; roomNum < 10; roomNum++) {
 listOut.print(guests[roomNum]);

 listOut.print(" ");

 }

 listOut.close();

 }

 }

}

Figures 11-5 through 11-7 show the running of the code in Listing 11-4. Back in
Figure 11-3, the motel starts with two vacant rooms — Rooms 3 and 8. (Remember,
the rooms start with Room 0.) The first time that you run the code in Listing 11-4,
the program tells you that Room 3 is vacant and puts five people into the room.
The second time you run the code, the program finds the remaining vacant room
(Room 8) and puts a party of ten in the room. (What a party!) The third time you
run the code, you have no more vacant rooms. When the program discovers this,
it displays the message Sorry, no v cancy, omitting at least one letter in the
tradition of all motel neon signs.

304 PART 4 Smart Java Techniques

A run of the code in Listing 11-4 writes a brand-new GuestList.txt file. This can
be confusing because each Java IDE has its own way of displaying the GuestList.
txt file’s content. Some IDEs don’t automatically display the newest GuestList.
txt file, so after running the code from Listing 11-4, you may not immediately see
a change. (For example, in Figure 11-5, Room 3 is empty. But after a run of the
code, Figure 11-6 shows Room 3 having five guests.) Even if you don’t see a
change, consecutive runs of Listing 11-4 change the GuestList.txt file. Poke
around within your favorite IDE to find out how to make the IDE refresh the
GuestList.txt file’s display.

In Listing 11-4, the condition roomNum < 10 && guests[roomNum] != 0 can be
really tricky. If you move things around and write guests[roomNum] != 0 &&
roomNum < 10, you can get yourself into lots of trouble. For details, see this
book’s website (www.allmycode.com/JavaForDummies).

FIGURE 11-5:
Filling a vacancy.

FIGURE 11-6:
Filling the last
vacant room.

FIGURE 11-7:
Sorry, Bud. No

rooms.

http://www.allmycode.com/JavaForDummies

CHAPTER 11 Using Arrays to Juggle Values 305

Writing to a file
The code in Listing 11-4 uses tricks from other chapters and sections of this book.
The code’s only brand-new feature is the use of PrintStream to write to a disk file.
Think about any example in this book that calls System.out.print, out.println,
or their variants. What’s really going on when you call one of these methods?

The thing called System.out is an object. The object is defined in the Java API. In
fact, System.out is an instance of a class named java.io.PrintStream (or just
PrintStream to its close friends). Now each object created from the PrintStream
class has methods named print and println. Just as each Account object in
 Listing 7-3 has a display method, and just as the DecimalFormat object in
 Listing 10-1 has a format method, so the PrintStream object named out has
print and println methods. When you call System.out.println, you’re calling
a method that belongs to a PrintStream instance.

Okay, so what of it? Well, System.out always stands for some text area on your
computer screen. If you create your own PrintStream object and you make that
object refer to a disk file, that PrintStream object refers to the disk file. When you
call that object’s print method, you write text to a file on your hard drive.

In Listing 11-4, when you say

PrintStream listOut = new PrintStream("GuestList.txt");

listOut.print(guests[roomNum]);

listOut.print(" ");

you’re telling Java to write text to a file on your hard drive — the GuestList.txt file.

That’s how you update the count of guests staying in the hotel. When you call
listOut.print for the number of guests in Room 3, you may print the number 5.
So, between Figures 11-5 and 11-6, a number in the GuestList.txt file changes
from 0 to 5. Then in Figure 11-6, you run the program a second time. When the
program gets data from the newly written GuestList.txt file, Room 3 is no lon-
ger vacant. This time, the program suggests Room 8.

This is more of an observation than a tip. Say that you want to read data from a file
named Employees.txt. To do this, you make a scanner. You call new Scanner(new
File("Employees.txt")). If you accidentally call new Scanner("Employees.
txt") without the new File part, the call doesn’t connect to your Employees.txt
file. But notice how you prepare to write data to a file. You make a PrintStream
instance by calling new PrintStream("GuestList.txt"). You don’t use new File
anywhere in the call. If you goof and accidentally include new File, the Java com-
piler becomes angry, jumps out, and bites you.

306 PART 4 Smart Java Techniques

When to close a file
Notice the placement of new Scanner calls, new PrintStream calls, and close
calls in Listing 11-4. As in all the examples, each new Scanner call has a corre-
sponding close call. And in Listing 11-4, the new PrintStream call has its own
close call (the listOut.close() call). But in Listing 11-4, I’m careful to place
these calls tightly around their corresponding nextInt and print calls. For exam-
ple, I don’t set up diskScanner at the very start of the program, and I don’t wait
until the very end of the program to close diskScanner. Instead, I perform all my
diskScanner tasks one after the other in quick succession:

Scanner diskScanner = new Scanner(new File("GuestList.txt")); //construct

for (roomNum = 0; roomNum < 10; roomNum++) {
 guests[roomNum] = diskScanner.nextInt(); //read

}

diskScanner.close(); //close

I do the same kind of thing with the keyboard and listOut objects.

I do this quick dance with input and output because my program uses GuestList.
txt twice — once for reading numbers and a second time for writing numbers. If
I’m not careful, the two uses of GuestList.txt might conflict with one another.
Consider the following program:

// THIS IS BAD CODE

import java.io.File;

import java.io.IOException;

import java.io.PrintStream;

import java.util.Scanner;

public class BadCode {

 public static void main(String args[]) throws IOException {

 int guests[] = new int[10];

 Scanner diskScanner = new Scanner(new File("GuestList.txt"));

 PrintStream listOut = new PrintStream("GuestList.txt");

 guests[0] = diskScanner.nextInt();

 listOut.print(5);

 diskScanner.close();

 listOut.close();

 }

}

CHAPTER 11 Using Arrays to Juggle Values 307

Like many methods and constructors of its kind, the PrintStream constructor
doesn’t pussyfoot around with files. If it can’t find a GuestList.txt file, the
constructor creates a GuestList.txt file and prepares to write values into it. But,
if a GuestList.txt file already exists, the PrintStream constructor deletes the
existing file and prepares to write to a new, empty GuestList.txt file. In the
BadCode class, the new PrintStream constructor call deletes whatever GuestList.
txt file already exists. This deletion comes before the call to diskScanner.
nextInt(). So diskScanner.nextInt() can’t read whatever was originally in the
GuestList.txt file. That’s bad!

To avoid this disaster, I carefully separate the two uses of the GuestList.txt file
in Listing 11-4. Near the top of the listing, I construct diskScanner, and then read
from the original GuestList.txt file, and then close diskScanner. Later, toward
the end of the listing, I construct listOut, and then write to a new GuestList.txt
file, and then close listOut. With writing separated completely from reading,
everything works correctly.

The keyboard variable in Listing 11-4 doesn’t refer to GuestList.txt, so keyboard
doesn’t conflict with the other input or output variables. No harm would come
from following my regular routine — putting keyboard = new Scanner(System.
in) at the start of the program and putting keyboard.close() at the end of the
program. But to make Listing 11-4 as readable and as uniform as possible, I place
the keyboard constructor and the close call very tightly around the keyboard.
nextInt call.

Use my DummiesFrame (from Chapter 7) to create a GUI program based on the
ideas in Listing 11-4. In your program, the frame has only one input row. If room 3
is vacant, the input row’s label is How many people for room 3? If the user types 5 in
the How many people for room 3 row and then clicks the button, the program puts 5
people in room 3.

Arrays of Objects
The Java Motel is open for business, now with improved guest registration soft-
ware! The people who brought you this chapter’s first section are always scratch-
ing their heads, looking for the best ways to improve their services. Now, with
some ideas from object-oriented programming, they’ve started thinking in terms
of a Room class.

“And what,” you ask, “would a Room instance look like?” That’s easy. A Room
instance has three properties: the number of guests in the room, the room rate,
and a smoking/nonsmoking stamp. Figure 11-8 illustrates the situation.

308 PART 4 Smart Java Techniques

Listing 11-5 shows the code that describes the Room class. As promised, each
instance of the Room class has three fields: the guests, rate, and smoking fields.
(A false value for the boolean field, smoking, indicates a nonsmoking room.)
In addition, the entire Room class has a static field named currency. On my
 computer in the United States, this currency object makes room rates look like
dollar amounts.

To find out what static means, see Chapter 10.

LISTING 11-5: So This Is What a Room Looks Like!

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class Room {

 private int guests;

 private double rate;

 private boolean smoking;

 private static NumberFormat currency = NumberFormat.getCurrencyInstance();

 public void readRoom(Scanner diskScanner) {

 guests = diskScanner.nextInt();

 rate = diskScanner.nextDouble();

 smoking = diskScanner.nextBoolean();

 }

 public void writeRoom() {

 out.print(guests);

 out.print("\t");

 out.print(currency.format(rate));

 out.print("\t");

 out.println(smoking ? "yes" : "no");

 }

}

FIGURE 11-8:
Another abstract

snapshot of
rooms in the

Java Motel.

CHAPTER 11 Using Arrays to Juggle Values 309

Listing 11-5 has a few interesting quirks, but I’d rather not describe them until
after you see all the code in action. That’s why, at this point, I move right on to the
code that calls the Listing 11-5 code. After you read about arrays of rooms (shown
in Listing 11-6), check out my description of the Listing 11-5 quirks.

This warning is a deliberate repeat of an idea from Chapter 4, Chapter 7, and from
who-knows-what-other chapter: Be careful when you use type double or type
float to store money values. Calculations with double or float can be inaccurate.
For more information (and more finger wagging), see Chapters 4 and 7.

This tip has absolutely nothing to do with Java. If you’re the kind of person who
prefers a smoking room (with boolean field smoking = true in Listing 11-5), find
someone you like — someone who can take three consecutive days off work. Have
that person sit with you and comfort you for 72 straight hours while you refrain
from smoking. You might become temporarily insane while the nicotine leaves
your body, but eventually you’ll be okay. And your friend will feel like a real hero.

Using the Room class
Now you need an array of rooms. The code to create such a thing is in Listing 11-6.
The code reads data from the RoomList.txt file. (Figure 11-9 shows the contents
of the RoomList.txt file.)

Figure 11-10 shows a run of the code in Listing 11-6.

LISTING 11-6: Would You Like to See a Room?

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

public class ShowRooms {

 public static void main(String args[]) throws IOException {

 Room rooms[];

 rooms = new Room[10];

 Scanner diskScanner = new Scanner(new File("RoomList.txt"));

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 rooms[roomNum] = new Room();

 rooms[roomNum].readRoom(diskScanner);

 }

(continued)

310 PART 4 Smart Java Techniques

 out.println("Room\tGuests\tRate\tSmoking?");

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(roomNum);

 out.print("\t");

 rooms[roomNum].writeRoom();

 }

 diskScanner.close();

 }

}

FIGURE 11-9:
A file of

Room data.

FIGURE 11-10:
A run of the code

in Listing 11-6.

LISTING 11-6: (continued)

CHAPTER 11 Using Arrays to Juggle Values 311

Say what you want about the code in Listing 11-6. As far as I’m concerned, only
one issue in the whole listing should concern you. And what, you ask, is that issue?
Well, to create an array of objects — as opposed to an array made up of primitive
values — you have to do three things: Make the array variable, make the array
itself, and then construct each individual object in the array. This is different from
creating an array of int values or an array containing any other primitive type
values. When you create an array of primitive type values, you do only the first two
of these three things.

To help make sense of all this, follow along in Listing 11-6 and Figure 11-11 as you
read the following points:

 » Room rooms[];: This declaration creates a rooms variable. This variable is
destined to refer to an array (but doesn’t yet refer to anything).

 » rooms = new Room[10];: This statement reserves ten slots of storage in the
computer’s memory. The statement also makes the rooms variable refer to
the group of storage slots. Each slot is destined to refer to an object (but
doesn’t yet refer to anything).

 » rooms[roomNum] = new Room();: This statement is inside a for loop. The
statement is executed once for each of the ten room numbers. For example,
the first time through the loop, this statement says rooms[0] = new Room().
That first time around, the statement makes the slot rooms[0] refer to an
actual object (an instance of the Room class).

FIGURE 11-11:
Steps in creating

an array of
objects.

312 PART 4 Smart Java Techniques

Although it’s technically not considered a step in array making, you still have to
fill each object’s fields with values. For instance, the first time through the loop,
the readRoom call says rooms[1].readRoom(diskScanner), which means, “Read
data from the RoomList.txt file into the rooms[1] object’s fields (the guests,
rate, and smoking fields).” Each time through the loop, the program creates a
new object and reads data into that new object’s fields.

You can squeeze the steps together just as you do when creating arrays of primi-
tive values. For instance, you can do the first two steps in one fell swoop, like this:

Room rooms[] = new Room[10];

You can also use an array initializer. (For an introduction to array initializers, see
the section “Using an array initializer,” earlier in this chapter.)

Yet another way to beautify your numbers
You can make numbers look nice in plenty of ways. If you take a peek at some
earlier chapters, for example, you can see that Listing 7-7 uses printf, and
Listing 10-1 uses a DecimalFormat. But in Listing 11-5, I display a currency
amount. I use the NumberFormat class with its getCurrencyInstance method.

If you compare the formatting statements in Listings 10-1 and 11-5, you don’t see
much difference.

 » One listing uses a constructor; the other listing calls getCurrency
Instance. The getCurrencyInstance method is a good example of what’s
called a factory method. A factory method is a convenient tool for creating
commonly used objects. People always need code that displays currency
amounts. So the getCurrencyInstance method creates a currency format
without forcing you to write a complicated DecimalFormat constructor call. In
the United States, this complicated constructor call would be new
DecimalFormat ("$###0.00;($###0.00)").

Like a constructor, a factory method returns a brand-new object. But unlike a
constructor, a factory method has no special status. If you create your own
factory method, you can name it anything you want. When you call a factory
method, you don’t use the keyword new.

 » One listing uses DecimalFormat; the other listing uses NumberFormat. A
decimal number is a certain kind of number. (In fact, a decimal number is a
number written in the base-10 system.) Accordingly, the DecimalFormat class
is a subclass of the NumberFormat class. The DecimalFormat methods are
more specific, so for most purposes, I use DecimalFormat. But it’s harder to

CHAPTER 11 Using Arrays to Juggle Values 313

use the DecimalFormat class’s getCurrencyInstance method. For programs
that involve money, I tend to use NumberFormat.

 » Both listings use format methods. In the end, you just write something like
currency.format(rate) or decFormat.format(average). After that, Java
does the work for you.

From Chapter 4 onward, I issue gentle warnings against using types such as
double and float for storing currency values. For the most accurate currency
calculations, use int, long, or — best of all — BigDecimal.

You can read more about the dangers of double types and currency values in
Chapter 7.

The conditional operator
Listing 11-5 uses an interesting doodad called the conditional operator. This condi-
tional operator takes three expressions and returns the value of just one of them.
It’s like a mini if statement. When you use the conditional operator, it looks
something like this:

conditionToBeTested ? expression1 : expression2

The computer evaluates the conditionToBeTested condition. If the condition is true,
the computer returns the value of expression1. But, if the condition is false, the
computer returns the value of expression2.

So, in the code

smoking ? "yes" : "no"

the computer checks whether smoking has the value true. If so, the whole 3-part
expression stands for the first string, "yes". If not, the whole expression stands
for the second string, "no".

In Listing 11-5, the call to out.println causes either "yes" or "no" to display.
Which string gets displayed depends on whether smoking has the value true or
false.

How do you learn Java? You learn it the same way you get to Carnegie Hall —
Practice! Practice! Practice!

 » In Chapter 9, you create a Student class. Each student has a name and an ID
number. For this programming challenge, imagine that each student has five

314 PART 4 Smart Java Techniques

grades — one for each of the five courses the student takes. Each grade is a
double value from 0.0 to 4.0 (4.0 is the best). A student’s grade point average
(GPA) is the average of the student’s five grade values.

In this chapter’s Student class, one of the fields is an array of five double
values. Your program finds the student’s GPA and displays it (along with the
student’s name and ID number) on the screen.

 » Here’s a challenging exercise: Write a primitive word processor program. To
show you what your program might do, I’ve created a sample run. In this run,
I’ve set the user’s input in boldface text.

>

>

>

>

>

Line to replace (or -1 to quit): 0

Type the new line: There once was an old man with glasses

> There once was an old man with glasses

>

>

>

>

Line to replace (or -1 to quit): 1

Type the new line: Who learned about objects and classes.

> There once was an old man with glasses

> Who learned about objects and classes.

>

>

>

Line to replace (or -1 to quit): 3

Type the new line: Go climb a tree.

> There once was an old man with glasses

> Who learned about objects and classes.

>

> Go climb a tree.

>

CHAPTER 11 Using Arrays to Juggle Values 315

 Line to replace (or -1 to quit): 2

Type the new line: "At last, I see!

> There once was an old man with glasses

> Who learned about objects and classes.

> "At last, I see!

> Go climb a tree.

>

Line to replace (or -1 to quit): 4

Type the new line: I'll teach these ideas to the masses!"

> There once was an old man with glasses

> Who learned about objects and classes.

> "At last, I see!

> Go climb a tree.

> I'll teach these ideas to the masses!"

Line to replace (or -1 to quit): 3

Type the new line: It's not only for me.

> There once was an old man with glasses

> Who learned about objects and classes.

> "At last, I see!

> It's not only for me.

> I'll teach these ideas to the masses!"

Line to replace (or -1 to quit): -1

Command Line Arguments
Once upon a time, most programmers used a text-based development interface.
To run the Displayer example in Chapter 3, they didn’t select Run from a menu
in a fancy integrated development environment. Instead, they typed a command
in a plain-looking window, usually with white text on a black background.
Figure 11-12 illustrates the point. In Figure 11-12, I type the words java Displayer
and the computer responds with my Java program’s output (the words You'll
love Java!).

316 PART 4 Smart Java Techniques

The plain-looking window goes by the various names, depending on the kind of
operating system that you use. In Windows, a text window of this kind is a com-
mand prompt window. On a Macintosh and in Linux, this window is the terminal.
Some versions of Linux and UNIX call this window a shell.

Anyway, back in ancient times, you could write a program that sucked up extra
information when you typed the command to launch the program. Figure 11-13
shows you how this worked.

In Figure 11-13, the programmer types java MakeRandomNumsFile to run the
MakeRandomNumsFile program. But the programmer follows java MakeRandom
NumsFile with two extra pieces of information: MyNumberedFile.txt and 5. When
the MakeRandomNumsFile program runs, the program sucks up two extra pieces of
information and uses them to do whatever the program has to do. In Figure 11-13,
the program sucks up MyNumberedFile.txt 5, but on another occasion the pro-
grammer might type SomeStuff 28 or BunchONumbers 2000. The extra informa-
tion can be different each time you run the program.

The next question is, “How does a Java program know that it’s supposed to snarf
up extra information each time it runs?” Since you first started working with Java,
you’ve been seeing this String args[] business in the header of every main
method. Well, it’s high time you found out what that’s all about. The parameter
args[] is an array of String values. These String values are called command line
arguments.

Some programmers write

public static void main(String args[])

FIGURE 11-13:
When you launch

MakeRandom
NumsFile, you

type some extra
information.

FIGURE 11-12:
How dull!

CHAPTER 11 Using Arrays to Juggle Values 317

and other programmers write

public static void main(String[] args)

Either way, args is an array of String values.

Using command line arguments
in a Java program
Listing 11-7 shows you how to use command line arguments in your code.

LISTING 11-7: Generate a File of Numbers

import java.util.Random;

import java.io.PrintStream;

import java.io.IOException;

public class MakeRandomNumsFile {

 public static void main(String args[]) throws IOException {

 Random generator = new Random();

 if (args.length < 2) {

 System.out.println("Usage: MakeRandomNumsFile filename number");

 System.exit(1);

 }

 PrintStream printOut = new PrintStream(args[0]);

 int numLines = Integer.parseInt(args[1]);

 for (int count = 1; count <= numLines; count++) {
 printOut.println(generator.nextInt(10) + 1);
 }

 printOut.close();

 }

}

If a particular program expects some command line arguments, you can’t start
the program running the same way you’d start most of the other programs in this
book. The way you feed command line arguments to a program depends on the
IDE that you’re using — Eclipse, NetBeans, or whatever. That’s why this book’s
website (www.allmycode.com/JavaForDummies) has instructions for feeding
arguments to programs using various IDEs.

http://www.allmycode.com/JavaForDummies

318 PART 4 Smart Java Techniques

When the code in Listing 11-7 begins running, the args array gets its values. With
the run shown in Figure 11-13, the array component args[0] automatically takes
on the value "MyNumberedFile.txt", and args[1] automatically becomes "5". So
the program’s assignment statements end up having the following meaning:

PrintStream printOut = new PrintStream("MyNumberedFile.txt");

int numLines = Integer.parseInt("5");

The program creates a file named MyNumberedFile.txt and sets numLines to 5.
So later in the code, the program randomly generates five values and puts those
values into MyNumberedFile.txt. One run of the program gives me the file shown
in Figure 11-14.

After running the code in Listing 11-7, where can you find the new file
(MyNumberedFile.txt) on your hard drive? The answer depends on a lot of differ-
ent things, so I don’t want to commit to one particular answer. If you use an IDE
with programs divided into projects, then the new file is somewhere in the proj-
ect’s folder. One way or another, you can change Listing 11-7 to specify a full path
name — a name like "c:\\Users\\MyName\\Documents\\MyNumberedFile.txt"
or "/Users/MyName/Documents/MyNumberedFile.txt".

In Windows, file path names contain backslash characters. And in Java, when you
want to indicate a backslash inside a double-quoted String literal, you use a
 double backslash instead. That’s why "c:\\Users\\MyName\\Documents\\My
NumberedFile.txt" contains pairs of backslashes. In contrast, file paths in the
Linux and Macintosh operating systems contain forward slashes. To indicate a
forward slash in a Java String, use only one forward slash.

Notice how each command line argument in Listing 11-7 is a String value. When
you look at args[1], you don’t see the number 5 — you see the string "5" with a
digit character in it. Unfortunately, you can’t use that "5" to do any counting. To
get an int value from "5", you have to apply the parseInt method. (Again, see
Listing 11-7.)

The parseInt method lives inside a class named Integer. So, to call parseInt, you
preface the name parseInt with the word Integer. The Integer class has all kinds of
handy methods for doing things with int values.

FIGURE 11-14:
A file from a run

of the code in
Listing 11-7.

CHAPTER 11 Using Arrays to Juggle Values 319

In Java, Integer is the name of a class, and int is the name of a primitive (simple)
type. The two things are related, but they’re not the same. The Integer class has
methods and other tools for dealing with int values.

Checking for the right number of
command line arguments
What happens if the user makes a mistake? What if the user forgets to type the
number 5 on the first line in Figure 11-13?

Then the computer assigns "MyNumberedFile.txt" to args[0], but it doesn’t assign
anything to args[1]. This is bad. If the computer ever reaches the statement

int numLines = Integer.parseInt(args[1]);

the program crashes with an unfriendly ArrayIndexOutOfBoundsException.

What do you do about this? In Listing 11-7, you check the length of the args
array. You compare args.length with 2. If the args array has fewer than two
components, you display a message on the screen and exit from the program.
Figure 11-15 shows the resulting output.

Despite the checking of args.length in Listing 11-7, the code still isn’t crash-
proof. If the user types five instead of 5, the program takes a nosedive with a
NumberFormatException. The second command line argument can’t be a word.
The argument has to be a number (and a whole number, at that). I can add state-
ments to Listing 11-7 to make the code more bulletproof, but checking for the
NumberFormatException is better done in Chapter 13.

When you’re working with command line arguments, you can enter a String
value with a blank space in it. Just enclose the value in double quote marks. For
instance, you can run the code of Listing 11-7 with arguments "My Big Fat File.
txt" 7.

The sun is about to set on this book’s discussion of arrays. But before you leave
the subject of arrays, think about this: An array is a row of things, and not every
kind of thing fits into just one row. Take the first few examples in this chapter
involving the motel. The motel rooms, numbered 0 through 9, are in one long line.

FIGURE 11-15:
The code in

Listing 11-7 tells
you how to run it.

320 PART 4 Smart Java Techniques

But what if you move up in the world? You buy a big hotel with 50 floors and with
100 rooms on each floor. Then the data is square shaped. You have 50 rows, and
each row contains 100 items. Sure, you can think of the rooms as if they’re all in
one long row, but why should you have to do that? How about having a
2-dimensional array? It’s a square-shaped array in which each component
has two indices: a row number and a column number. Alas, I have no space in
this book to show you a 2-dimensional array (and I can’t afford a big hotel’s
prices, anyway). But if you visit this book’s website (www.allmycode.com/
JavaForDummies), you can read all about it.

You can never get too much practice:

 » Write a program whose command line arguments include three int values.
As its output, the program displays the largest of the three int values.

 » In a previous section, you create a simple word processing program. Improve
the program by adding two command line arguments:

• The first argument is the name of an input file. The input file contains
five lines of text, some or all of which may be blank. At the start of its run,
the program reads lines from the input file and displays them on the
screen.

• The second argument is the name of another file — an output file. At
the end of its run, the program writes the edited text to the output file.

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 321

IN THIS CHAPTER

 » Facing the limitations of arrays

 » Dealing with a bunch of objects at once

 » Using Java’s cool functional
programming features

 » Developing code for multicore
processors

Using Collections and
Streams (When Arrays
Aren’t Good Enough)

Chapter 11 is about arrays. With an array, you can manage a bunch of things
all at once. In a hotel-management program, you can keep track of all the
rooms. You can quickly find the number of people in a room or find one of

the vacant rooms.

However, arrays don’t always fit the bill. In this chapter, you find out where arrays
fall short and how collections can save the day.

Understanding the Limitations of Arrays
Arrays are nice, but they have some serious limitations. Imagine that you store
customer names in some predetermined order. Your code contains an array, and
the array has space for 100 names:

String name[] = new String[100];

for (int i = 0; i < 100; i++) {

Chapter 12

322 PART 4 Smart Java Techniques

 name[i] = new String();

}

All is well until, one day, customer number 101 shows up. As your program runs,
you enter data for customer 101, hoping desperately that the array with 100 com-
ponents can expand to fit your growing needs.

No such luck. Arrays don’t expand. Your program crashes with an ArrayIndex
OutOfBoundsException.

“In my next life, I’ll create arrays of length 1,000,” you say to yourself. And when
your next life rolls around, you do just that:

String name[] = new String[1000];

for (int i = 0; i < 1000; i++) {
 name[i] = new String();

}

But during your next life, an economic recession occurs. Instead of having
101 customers, you have only 3 customers. Now you’re wasting space for 1,000
names when space for 3 names would do.

And what if no economic recession occurs? You’re sailing along with your array of
size 1,000, using a tidy 825 spaces in the array. The components with indices
0 through 824 are being used, and the components with indices 825 through 999
are waiting quietly to be filled.

One day, a brand-new customer shows up. Because your customers are stored in
order (alphabetically by last name, numerically by Social Security number, what-
ever), you want to squeeze this customer into the correct component of your array.
The trouble is that this customer belongs very early on in the array, at the com-
ponent with index 7. What happens then?

You take the name in component number 824 and move it to component 825.
Then you take the name in component 823 and move it to component 824. Take
the name in component 822 and move it to component 823. You keep doing this
until you’ve moved the name in component 7. Then you put the new customer’s
name into component 7. What a pain! Sure, the computer doesn’t complain. (If the
computer has feelings, it probably likes this kind of busywork.) But as you move
around all these names, you waste processing time, you waste power, and you
waste all kinds of resources.

“In my next life, I’ll leave three empty components between every two names.”
And of course, your business expands. Eventually you find that three aren’t enough.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 323

Collection Classes to the Rescue
The issues in the preceding section aren’t new. Computer scientists have been
working on these issues for a long time. They haven’t discovered any magic one-
size-fits-all solution, but they’ve discovered some clever tricks.

The Java API has a bunch of classes known as collection classes. Each collection
class has methods for storing bunches of values, and each collection class’s meth-
ods use some clever tricks. For you, the bottom line is as follows: Certain collec-
tion classes deal as efficiently as possible with the issues raised in the preceding
section. If you have to deal with such issues when writing code, you can use these
collection classes and call the classes’ methods. Rather than fret about a customer
whose name belongs in position 7, you can just call a class’s add method. The
method inserts the name at a position of your choice and deals reasonably with
whatever ripple effects have to take place. In the best circumstances, the insertion
is very efficient. In the worst circumstances, you can rest assured that the code
does everything the best way it can.

Using an ArrayList
One of the most versatile of Java’s collection classes is the ArrayList. Listing 12-1
shows you how it works.

LISTING 12-1: Working with a Java Collection

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

public class ShowNames {

 public static void main(String args[]) throws IOException {

 ArrayList<String> people = new ArrayList<>();

 Scanner diskScanner = new Scanner(new File("names.txt"));

 while (diskScanner.hasNext()) {

 people.add(diskScanner.nextLine());

 }

 people.remove(0);

 people.add(2, "Jim Newton");
(continued)

324 PART 4 Smart Java Techniques

 for (String name : people) {

 out.println(name);

 }

 diskScanner.close();

 }

}

Figure 12-1 shows you a sample names.txt file. The code in Listing 12-1 reads that
names.txt file and prints the stuff in Figure 12-2.

All the interesting things happen when you execute the remove and add methods.
The variable named people refers to an ArrayList object. When you call that
object’s remove method,

people.remove(0);

you eliminate a value from the list. In this case, you eliminate whatever value is in
the list’s initial position (the position numbered 0). So in Listing 12-1, the call to
remove takes the name Barry Burd out of the list.

That leaves only eight names in the list, but then the next statement,

people.add(2, "Jim Newton");

inserts a name into position number 2. (After Barry is removed, position number 2
is the position occupied by Harry Spoonswagler, so Harry moves to position 3, and
Jim Newton becomes the number 2 man.)

FIGURE 12-1:
Several names

in a file.

FIGURE 12-2:
The code in
Listing 12-1

changes some of
the names.

LISTING 12-1: (continued)

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 325

Notice that an ArrayList object has two different add methods. The method that
adds Jim Newton has two parameters: a position number and a value to be added.
Another add method

people.add(diskScanner.nextLine());

takes only one parameter. This statement takes whatever name it finds on a line
of the input file and appends that name to the end of the list. (The add method
with only one parameter always appends its value to what’s currently the end of
the ArrayList object.)

The last few lines of Listing 12-1 contain an enhanced for loop. Like the loop in
Listing 11-3, the enhanced loop in Listing 12-1 has the following form:

for (variable-type variable-name : range-of-values)

In Listing 12-1, the variable-type is String, the variable-name is name, and the
range-of-values includes the things stored in the people collection. During an
iteration of the loop, name refers to one of the String values stored in people. (So
if the people collection contains nine values, the for loop goes through nine iter-
ations.) During each iteration, the statement inside the loop displays a name on
the screen.

Using generics
Look again at Listing 12-1, shown earlier, and notice the funky ArrayList
declaration:

ArrayList<String> people = new ArrayList<>();

Starting with Java 5.0, each collection class is generified. That ugly-sounding word
means that every collection declaration should contain some angle-bracketed
stuff, such as <String>. The thing that’s sandwiched between < and > tells Java
what kinds of values the new collection may contain. For example, in Listing 12-1,
the words ArrayList<String> people tell Java that people is a bunch of strings.
That is, the people list contains String objects (not Room objects, not Account
objects, not Employee objects, nothing other than String objects).

You can’t use generics in any version of Java before Java 5.0, and the code in
 Listing 12-1 goes kablooey in any version before Java 7. For more about generics,
see the nearby sidebar, “All about generics.” And for more about Java’s version
numbers, see Chapter 2.

Apple

326 PART 4 Smart Java Techniques

ALL ABOUT GENERICS
One of the original design goals for Java was to keep the language as simple as possible.
James Gosling, the language’s creator, took some unnecessarily complicated features of
C++ and tossed them out the window. The result was a language that was elegant and
sleek. Some people said the language was too sleek. So, after several years of discussion
and squabbling, Java became a bit more complicated. By the year 2004, Java had enum
types, enhanced for loops, static import, and some other interesting new features. But
the most talked-about new feature was the introduction of generics:

ArrayList<String> people = new ArrayList<String>();

The use of anything like <String> was new in Java 5.0. In old-style Java, you’d write

ArrayList people = new ArrayList();

In those days, an ArrayList could store almost anything you wanted to put in it: a
number, an Account, a Room, a String — anything. The ArrayList class was
versatile, but with this versatility came some headaches. If you could put anything into
an ArrayList, you couldn’t easily predict what you would get out of an ArrayList.
In particular, you couldn’t easily write code that assumed you had stored certain types
of values in the ArrayList. Here’s an example:

ArrayList things = new ArrayList();

things.add(new Account());

Account myAccount = things.get(0);

//DON'T USE THIS. IT'S BAD CODE.

In Listing 12-1, the words ArrayList<String> people say that the people
variable can refer only to a collection of String values. So, from that point on, any
reference to an item from the people collection is treated exclusively as a String.
If you write

people.add(new Room());

the compiler coughs up your code and spits it out because a Room (created in
 Chapter 11) isn’t the same as a String. (This coughing and spitting happens even
if the compiler has access to the Room class’s code — the code in Chapter 11.) But
the statement

people.add("George Gow");

is just fine. Because "George Gow" has type String, the compiler smiles happily.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 327

In the third line, the call to get(0) grabs the earliest value in the things collection. The
call to get(0) is okay, but then the compiler chokes on the attempted assignment to
myAccount. You get a message on the third line saying that whatever you get from the
things list can’t be stuffed into the myAccount variable. You get this message because
by the time the compiler reaches the third line, it has forgotten that the item added on
the second line was of type Account!

The introduction of generics fixes this problem:

ArrayList<Account> things = new ArrayList<Account>();
things.add(new Account());

Account myAccount = things.get(0);

//USE THIS CODE INSTEAD. IT'S GOOD CODE.

Adding <Account> in two places tells the compiler that things stores Account
instances — nothing else. So, in the third line in the preceding code, you get a value
from the things collection. Then, because things stores only Account objects, you
can make myAccount refer to that new value.

Java 5.0 added generics to Java. But soon after the birth of Java 5.0, programmers
noticed how clumsy the code for generics can be. After all, you can create generics
within generics. An ArrayList can contain a bunch of arrays, each of which can be an
ArrayList. So you can write

ArrayList<ArrayList<String>[]> mess = new ArrayList<ArrayList
<String>[]>();

All the repetition in that mess declaration gives me a headache! To avoid this ugliness,
Java 7 and later versions have a diamond operator: <>. The diamond operator tells Java
to reuse whatever insanely complicated stuff you put in the previous part of the generic
declaration. In this example, the <> tells Java to reuse <ArrayList<String>[]>, even
though you write <ArrayList<String>[]> only once. Here’s how the streamlined Java
7 code looks:

ArrayList<ArrayList<String>[]> mess = new ArrayList<>();

In Java 7 and later, you can write either of these mess declarations: the original, nasty
declaration with two occurrences of ArrayList<String>[] or the streamlined (only
mildly nasty) declaration with the diamond operator and only one
ArrayList<String>[] occurrence.

Yes, the streamlined code is still complicated. But without all the ArrayList<String>[]
repetition, the streamlined code is less cumbersome. The Java 7 diamond operator takes
away one chance for you to copy something incorrectly and have a big error in your code.

328 PART 4 Smart Java Techniques

Wrapper classes
In Chapter 4, I point out that Java has two kinds of types: primitive types and ref-
erence types. (If you didn’t read those sections, or you don’t remember them,
don’t feel guilty. You’ll be okay.) Things like int, double, char, and boolean are
primitive types, and things like String, JFrame, ArrayList, and Account are ref-
erence types.

The distinction between primitive types and reference types has been a source of
contention since Java’s birth in 1995. Even now, Oracle’s wizards are hatching
plans to get around the stickier consequences of having two kinds of types. One of
those consequences is the fact that collections, such as the ArrayList, can’t con-
tain values of a primitive type. For example, it’s okay to write

ArrayList<String> people = new ArrayList<>();

but it’s not okay to write

ArrayList<int> numbers = new ArrayList<>(); // BAD! BAD!

because int is a primitive type. So, if you want to store values like 3, 55, and 21 in
an ArrayList, what do you do? Rather than store int values in the ArrayList,
you store Java’s Integer values:

ArrayList<Integer> list = new ArrayList<>();

In previous chapters, you see the Integer class in connection with the parseInt
method:

int numberOfCows = Integer.parseInt("536");

The Integer class has many methods, such as parseInt, for dealing with int
values. The class also has fields such as MAX_VALUE and MIN_VALUE, which stand
for the largest and smallest values that int variables may have.

The Integer class is an example of a wrapper class. Each of Java’s eight primitive
types has a corresponding wrapper class. You can use methods and fields in Java’s
Double, Character, Boolean, Long, Float, Short, and Byte wrapper classes.
For example, the Double class has methods named parseDouble, compareTo,
toHexString, and fields named MAX_VALUE and MAX_EXPONENT.

The Integer class wraps the primitive int type with useful methods and values.
In addition, you can create an Integer instance that wraps a single int value:

Integer myInteger = new Integer(42);

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 329

In this line of code, the myInteger variable has one int value inside it: the int
value 42. In Paul’s words, wrapping the int value 42 into an Integer object
myInteger is “something like putting lots of extra breading on okra. It makes 42
more digestible for finicky eaters like collections.”

Instances of the other wrapper classes work the same way. For example, an
instance of the Double class wraps up a single primitive double value.

Double averageNumberOfTomatoes = new Double(1.41421356237);

Here’s a program that stores five Integer values in an ArrayList:

import java.util.ArrayList;

public class Main {

 public static void main(String[] args) {

 ArrayList<Integer> list = new ArrayList<>();

 fillTheList(list);

 for (Integer n : list) {

 System.out.println(n);

 }

 }

 public static void fillTheList(ArrayList<Integer> list) {

 list.add(85);

 list.add(19);

 list.add(0);

 list.add(103);

 list.add(13);

 }

}

In the code, notice calls like list.add(85) that have int value parameters. At this
point, little Billy gets excited and says, “Look, Mom! I added the primitive int
value 85 to my ArrayList!” No, Billy. That’s not what’s really going on.

In this code, the list collection contains Integer values, not int values. A primi-
tive int value is a lot like an instance of the Integer class. But a primitive int
value isn’t exactly the same as an Integer instance.

What’s going on is called autoboxing. Before Java 5.0, you had to write

list.add(new Integer(85));

330 PART 4 Smart Java Techniques

if you wanted to add an Integer to an ArrayList. But Java 5.0 and later Java ver-
sions can automatically wrap an int value inside a box. An int value in a param-
eter list becomes an Integer in ArrayList. Java’s autoboxing feature makes
programs easier to read and write.

Testing for the presence of more data
Here’s a pleasant surprise. When you write a program like the one shown previ-
ously in Listing 12-1, you don’t have to know how many names are in the input
file. Having to know the number of names may defeat the purpose of using the
easily expandable ArrayList class. Rather than loop until you read exactly nine
names, you can loop until you run out of data.

The Scanner class has several nice methods, such as hasNextInt, hasNextDouble,
and plain old hasNext. Each of these methods checks for more input data. If
there’s more data, the method returns true. Otherwise, the method returns false.

Listing 12-1 uses the general-purpose hasNext method. This hasNext method
returns true as long as there’s anything more to read from the program’s input.
After the program scoops up that last Hugh R. DaReader line in Figure 12-1, the
subsequent hasNext call returns false. This false condition ends execution
of the while loop and plummets the computer toward the remainder of the
 Listing 12-1 code.

The hasNext method is quite handy. In fact, hasNext is so handy that it’s part of
a bigger concept known as an iterator, and iterators are baked into all of Java’s col-
lection classes.

Using an iterator
An iterator spits out a collection’s values, one after another. To obtain a value
from the collection, you call the iterator’s next method. To find out whether the
collection has any more values in it, you call the iterator’s hasNext method.
 Listing 12-2 uses an iterator to display people’s names.

LISTING 12-2: Iterating through a Collection

import static java.lang.System.out;

import java.util.Iterator;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 331

public class ShowNames {

 public static void main(String args[]) throws IOException {

 ArrayList<String> people = new ArrayList<>();

 Scanner diskScanner = new Scanner(new File("names.txt"));

 while (diskScanner.hasNext()) {

 people.add(diskScanner.nextLine());

 }

 people.remove(0);

 people.add(2, "Jim Newton");

 Iterator<String> iterator = people.iterator();

 while (iterator.hasNext()) {

 out.println(iterator.next());

 }

 diskScanner.close();

 }

}

You can replace the enhanced for loop at the end of Listing 12-1 with the boldface
code in Listing 12-2. When you do, you get the same output as before. (You get the
output in Figure 12-2.) In Listing 12-2, the first boldface line of code creates an
iterator from the people collection. The second and third lines call the iterator’s
hasNext and next methods to grab all objects stored in the people collection —
one for each iteration of the loop. These lines display each of the people collec-
tion’s values.

Which is better? An enhanced for loop or an iterator? Java programmers prefer
the enhanced for loop because the for loop involves less baggage — no iterator
object to carry from one line of code to the next. But as you see later in this chap-
ter, the most programming-enhanced feature can be upgraded, streamlined,
tweaked, and otherwise reconstituted. There’s no end to the way you can improve
upon your code.

Java’s many collection classes
The ArrayList class that I use in many of this chapter’s examples is only the tip
of the Java collections iceberg. The Java library contains many collections classes,
each with its own advantages. Table 12-1 contains an abbreviated list.

332 PART 4 Smart Java Techniques

Each collection class has its own set of methods (in addition to the methods that
it inherits from AbstractCollection, the ancestor of all collection classes).

To find out which collection classes best meet your needs, visit the Java API
 documentation pages at http://docs.oracle.com/javase/8/docs/api.

Once again, I’d like to put you to work:

 » Create an ArrayList containing Integer values. Then step through the
values in the list to find the largest value among all values in the list. For
example, if the list contains the numbers 85, 19, 0, 103, and 13, display the
number 103.

 » Create an ArrayList containing String values in alphabetical order. When
the user types an additional word on the keyboard, the program inserts the
new word into the ArrayList in the proper (alphabetically ordered) place.

For example, imagine that the list starts off containing the words "cat",
"dog", "horse", and "zebra" (in that order). After the user types the word
fish on the keyboard (and presses Enter), the list contains the words "cat",
"dog", "fish", "horse", and "zebra" (in that order).

To write this program, you may find the String class’s compareToIgnoreCase
method and the ArrayList class’s size method useful. You can find out
about these methods by visiting https://docs.oracle.com/javase/8/
docs/api/java/lang/String.html#compareToIgnoreCase-java.lang.
String- and http://docs.oracle.com/javase/8/docs/api/java/util/
ArrayList.html#size--.

TABLE 12-1	 Some Collection Classes
Class Name Characteristic

ArrayList A resizable array.

LinkedList A list of values, each having a field that points to the next one in the list.

Stack A structure that grows from bottom to top. The structure is optimized for access to the
topmost value. You can easily add a value to the top or remove the value from the top.

Queue A structure that grows at one end. The structure is optimized for adding values to one
end (the rear) and removing values from the other end (the front).

PriorityQueue A structure, like a queue, that lets certain (higher-priority) values move toward the front.

HashSet A collection containing no duplicate values.

HashMap A collection of key/value pairs.

http://docs.oracle.com/javase/8/docs/api
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html%23compareToIgnoreCase-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html%23compareToIgnoreCase-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html%23compareToIgnoreCase-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html%23size--
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html%23size--
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareToIgnoreCase-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#size--

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 333

 » In Chapter 11, you create a simple word processor. Your program stores lines
of text in an array, so the number of lines is limited by the size of the array.

In this chapter, you can improve on your work from Chapter 11 by storing
lines of text in an ArrayList. An ArrayList has no fixed size, so the number
of lines can grow to meet the user’s needs.

Your improved word processor supports three kinds of commands:

• The command i 21 tells your program to insert the 21st line of text into
the document. (If there’s already a 21st line of text, the new line goes
between the existing 20th and 21st lines.)

• The command r 13 tells your program to replace the 13th line of text in
the document. (If there’s already a 13th line of text, that old line of text
goes away.)

• The command d 7 tells your program to delete the seventh line of text. (If
there’s already an eighth line of text, that existing line becomes the seventh
line of text.)

This word processor program may be quite challenging. Work slowly and
carefully and don’t be discouraged. If you don’t get it at first, put the project
aside and come back to it later.

Functional Programming
From 1953 to 1957, John Backus and others developed the FORTRAN programming
language, which contained the basic framework for thousands of 20th century
programming languages. The framework has come to be known as imperative pro-
gramming because of its do-this-then-do-that nature.

A few years after the rise of FORTRAN, John McCarthy created another language,
named Lisp. Unlike FORTRAN, the underlying framework for Lisp is functional pro-
gramming. In a purely functional program, you avoid writing “do this, then do
that.” Instead, you write things like “Here’s how you’ll be transforming this into
that when you get around to doing the transformation.”

For one reason or another, imperative programming became the dominant mode.
As a result, Java is fundamentally an imperative programming language. But
recently, functional programming has emerged as a powerful and useful way of
thinking about code.

To help you understand functional programming, I start this section with an
analogy. Then, in the rest of this chapter, I present some Java examples.

334 PART 4 Smart Java Techniques

The analogy that I use to describe functional programming is very rough. A friend
of mine called this analogy a stretch because it applies to many different pro-
gramming frameworks, not only to functional programming. One way or another,
I think the analogy is helpful.

Here’s the analogy: Imagine a programming problem as a cube, and imagine an
imperative programming solution as a way of slicing up the cube into manageable
pieces. (See Figure 12-3.)

All was well until 2007, when, for the first time, computers sold to consumers had
multicore processors. A multicore processor can perform more than one instruc-
tion at a time. Figure 12-4 shows what happens when you try to squeeze an
imperative program into a multicore processor.

To get the most out of a four-core processor, you divide your code into four
pieces — one piece for each core. But with imperative programming, your pro-
gram’s pieces don’t fit neatly into your processor’s cores.

FIGURE 12-3:
Imperative

programming
slices up a

problem.

FIGURE 12-4:
An imperative

program’s
pieces don’t fit

neatly into a
multicore chip.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 335

In imperative programming, your code’s pieces interact with one another. All the
pieces might be updating the current price of Oracle stock shares (ticker symbol:
ORCL). The simultaneous updates become tangled. It’s like several high school
boys asking the same girl to the senior prom — nothing good ever comes of it.
You’ve experienced the same phenomenon if you’ve ever clicked a website’s
 Purchase button, only to learn that the item you’re trying to purchase is out of
stock. Someone else completed a purchase while you were filling in your credit
card information. Too many customers were grabbing for the same goods at the
same time.

Figure 12-3 suggests that, with imperative programming, you divide your code
into several pieces. Functional programming also divides code into pieces, but it
does so along different lines. (See Figure 12-5.) And here’s the good news: With
functional programming, the pieces of the code fit neatly into the processor’s
cores. (See Figure 12-6.)

FIGURE 12-5:
Functional

programming
slices the

problem along
different lines.

FIGURE 12-6:
A functional

program’s pieces
fit neatly into a
multicore chip.

336 PART 4 Smart Java Techniques

Solving a problem the old-fashioned way
In Chapter 11, you use arrays to manage the Java Motel. But that venture is behind
you now. You’ve given up the hotel business. (You tell people that you decided to
move on. But in all honesty, the hotel was losing a lot of money. According to the
United States bankruptcy court, the old Java Motel is currently in Chapter 11.)

Since leaving the hotel business, you’ve transitioned into online sales. Nowadays,
you run a website that sells books, DVDs, and other content-related items. (Barry
Burd’s Java For Dummies, 7th Edition, is currently your best seller, but that’s beside
the point.)

In your world, the sale of a single item looks something like the stuff in
Listing 12-3. Each sale has an item and a price.

LISTING	12-3:	 The Sale Class

public class Sale {

 private String item;

 private double price;

 public String getItem() {

 return item;

 }

 public void setItem(String item) {

 this.item = item;

 }

 public double getPrice() {

 return price;

 }

 public void setPrice(double price) {

 this.price = price;

 }

 public Sale(String item, double price) {

 this.item = item;

 this.price = price;

 }

}

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 337

To make use of the Sale class, you create a small program. The program totals up
the sales on DVDs. The program is shown in Listing 12-4.

LISTING	12-4:	 Using the Sale Class

import java.text.NumberFormat;

import java.util.ArrayList;

public class TallySales {

 public static void main(String[] args) {

 ArrayList<Sale> sales = new ArrayList<Sale>();

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 fillTheList(sales);

 double total = 0;

 for (Sale sale : sales) {

 if (sale.getItem().equals("DVD")) {

 total += sale.getPrice();

 }

 }

 System.out.println(currency.format(total));

 }

 static void fillTheList(ArrayList<Sale> sales) {

 sales.add(new Sale("DVD", 15.00));

 sales.add(new Sale("Book", 12.00));

 sales.add(new Sale("DVD", 21.00));

 sales.add(new Sale("CD", 5.25));

 }

}

In Chapter 11, you step through an array by using an enhanced for statement.
Listing 12-4 has its own enhanced for statement. But in Listing 12-4, the enhanced
for statement steps through the values in a collection. Each such value is a sale.
The loop repeatedly checks a sale to find out whether the item sold is a DVD. If so,
the code adds the sale’s price to the running total. The program’s output is
$36.00 — the running total displayed as a currency amount.

338 PART 4 Smart Java Techniques

The scenario in Listing 12-4 isn’t unusual. You have a collection of items (a col-
lection of sales, perhaps). You step through the items in the collection, finding the
items that meet certain criteria (the sale of a DVD, for example). You grab a certain
value (such as the sale price) of each item that meets your criteria. Then you do
something useful with the values that you’ve grabbed (for example, adding the
values together).

Here are some other examples:

 » Step through your list of employees. Find each employee whose performance
evaluation scored 3 or higher. Give each such employee a $100 bonus and
then determine the total amount of money you’ll pay in bonuses.

 » Step through your list of customers. For each customer who has shown
interest in buying a smartphone, send the customer an email about this
month’s discount plans.

 » Step through the list of planets that have been discovered. For each M-class
planet, find the probability of finding intelligent life on that planet. Then find
the average of all such probabilities.

This scenario is so common that it’s worth finding better and better ways to deal
with the scenario. One way to deal with it is to use some of the functional pro-
gramming features in Java.

Streams
The earlier section “Using an iterator” introduces iterators. You use an iterator’s
next method to spit out a collection’s values. Java takes this concept one step
further with the notion of a stream. A stream is like an iterator except that, with a
stream, you don’t have to call a next method. After being created, a stream spits
out a collection’s values automatically. To get values from a stream, you don’t call
a stream’s next method. In fact, a typical stream has no next method.

How does this work as part of a Java program? How do you create a stream that
spits out values? How does the stream know when to start spitting, and where
does the stream aim when it spits? For answers to these and other questions, read
the next several sections.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 339

Lambda expressions
In the 1930s, mathematician Alonzo Church used the Greek letter lambda (λ) to
represent a certain mathematical construct that’s created on the fly.* Over the
next several decades, the idea survived quietly in mathematics and computer sci-
ence journals. These days, in Java, the term lambda expression represents a short
piece of code that serves as both a method declaration and a method call, all cre-
ated on the fly.

Your first lambda expression

Here’s an example of a lambda expression:

(sale) -> sale.getItem().equals("DVD")

Figure 12-7 describes the lambda expression’s meaning.

A lambda expression is a concise way of defining a method and calling the method
without even giving the method a name. The lambda expression in Figure 12-7
does (roughly) what the following code does:

boolean itemIsDVD(Sale sale) {

 if sale.getItem().equals("DVD") {

 return true;

 } else {

 return false;

 }

}

itemIsDVD(sale);

The lambda expression in Figure 12-7 takes objects from a stream and calls a
method resembling itemIsDVD on each object. The result is a bunch of boolean
values — true for each sale of a DVD and false for a sale of something other than
a DVD.

* I attended a lecture given by Alonzo Church many years ago at the University of
Illinois. He was the world’s most meticulous presenter. Every detail of his lecture
was carefully planned and scrupulously executed. He handed out paper copies of
his notes, and I spent half the lecture staring at the notes, trying to decide whether
the notes were hand-written or typed.

340 PART 4 Smart Java Techniques

With or without lambda expressions, you can rewrite the itemIsDVD method with
a 1-line body:

boolean itemIsDVD(Sale sale) {

 return sale.getItem().equals("DVD");

}

A lambda expression with two parameters
Consider the following lambda expression:

(price1, price2) -> price1 + price2

Figure 12-8 describes the new lambda expression’s meaning.

The lambda expression in Figure 12-8 does (roughly) what the following code does:

double sum(double price1, double price2) {

 return price1 + price2;
}

sum(price1, price2);

FIGURE 12-7:
Does the item

that’s being
sold happen
to be a DVD?

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 341

The lambda expression in Figure 12-8 takes values from a stream and calls a
method resembling sum to combine the values. The result is the total of all prices.

The black sheep of lambda expressions
Here’s an interesting lambda expression:

(sale) -> System.out.println(sale.getPrice())

This lambda expression does (roughly) what the following code does:

void display(Sale sale) {

 System.out.println(sale.getPrice());

}

display(sale);

The lambda expression takes objects from a stream and calls a method resembling
display on each object. In the display method’s header, the word void indicates
that the method doesn’t return a value. When you call the display method (or you
use the equivalent lambda expression), you don’t expect to get back a value.
Instead, you expect the code to do something in response to the call (something
like displaying text on the computer’s screen).

To draw a sharp distinction between returning a value and “doing something,”
functional programmers have a name for “doing something without returning a
value” — they call that something a side effect. In functional programming, a side
effect is considered a second-class citizen, a last resort, a tactic that you use when
you can’t simply return a result. Unfortunately, displaying information on a
screen (something that so many computer programs do) is a side effect. Any

FIGURE 12-8:
Add two prices.

342 PART 4 Smart Java Techniques

program that displays output (on a screen, on paper, or as tea leaves in a cup) isn’t
a purely functional program.

A taxonomy of lambda expressions
Java divides lambda expressions into about 45 different categories. Table 12-2
lists a few of the categories.

The categories in Table 12-2 aren’t mutually exclusive. For example, every
Predicate is a Function. (Every Predicate accepts one parameter and returns a
result. The result happens to be boolean.)

Using streams and lambda expressions
Java has fancy methods that make optimal use of streams and lambda expres-
sions. With streams and lambda expressions, you can create an assembly line that
elegantly solves this chapter’s sales problem. Unlike the code in Listing 12-4, the
new assembly-line solution uses concepts from functional programming.

The assembly line consists of several methods. Each method takes the data, trans-
forms the data in some way or other, and hands its results to the next method in
line. Figure 12-9 illustrates the assembly line for this chapter’s sales problem.

In Figure 12-9, each box represents a bunch of raw materials as they’re trans-
formed along an assembly line. Each arrow represents a method (or, metaphori-
cally, a worker on the assembly line).

TABLE 12-2	 A Few Kinds of Lambda Expressions
Name Description Example

Function Accepts one parameter; produces a result
of any type

(sale) -> sale. price

Predicate Accepts one parameter; produces a
boolean valued result

(sale) -> sale.item.
equals("DVD")

BinaryOperator Accepts two parameters of the same type;
produces a result of the same type

(price1, price2) -> price1 +
price2

Consumer Accepts one parameter; produces no result (sale) -> System.out. println
(sale. price)

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 343

For example, in the transition from the second box to the third box, a worker
method (the filter method) sifts out sales of items that aren’t DVDs. Imagine
Lucy Ricardo standing between the second and third boxes, removing each book
or CD from the assembly line and tossing it carelessly onto the floor.

The parameter to Java’s filter method is a Predicate — a lambda expression
whose result is boolean. (See Tables 12-2 and 12-3.) The filter method in
 Figure 12-9 sifts out items that don’t pass the lambda expression’s true / false
test.

For some help understanding the words in the third column of Table 12-3
 (Predicate, Function and BinaryOperator), see the earlier section “A taxonomy
of lambda expressions.”

FIGURE 12-9:
A functional

programming
assembly line.

344 PART 4 Smart Java Techniques

In Figure 12-9, in the transition from the third box to the fourth box, a worker
method (the map method) pulls the price out of each sale. From that worker’s
place onward, the assembly line contains only price values.

To be more precise, Java’s map method takes a Function such as

(sale) -> sale.getPrice()

and applies the Function to each value in a stream. (See Tables 12-2 and 12-3.) So
the map method in Figure 12-9 takes an incoming stream of sale objects and
 creates an outgoing stream of price values.

In Figure 12-9, in the transition from the fourth box to the fifth box, a worker
method (the reduce method) adds up the prices of DVD sales. Java’s reduce
method takes two parameters:

 » The first parameter is an initial value.

In Figure 12-9, the initial value is 0.0.

 » The second parameter is a BinaryOperator. (See Tables 12-2 and 12-3.)

In Figure 12-9, the reduce method’s BinaryOperator is

(price1, price2) -> price1 + price2

TABLE 12-3	 Some Functional Programming Methods
Method Name Member Of Parameter(s) Result Type Result Value

stream Collection (for
example, an
ArrayList object)

(none) Stream A stream that spits
out elements of the
collection

filter Stream Predicate Stream A new stream
containing values
for which the lambda
expression returns
true

map Stream Function Stream A new stream
containing the results
of applying the
lambda expression to
the incoming stream

reduce Stream BinaryOperator The type
used by the
BinaryOperator

The result of
combining all the
values in the
incoming stream

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 345

The reduce method uses its BinaryOperator to combine the values from the
incoming stream. The initial value serves as the starting point for all the
 combining. So, in Figure 12-9, the reduce method does two additions. (See
Figure 12-10.)

For comparison, imagine calling the method

reduce(10.0, (value1, value2) -> value1 * value2)

with the stream whose values include 3.0, 2.0, and 5.0. The resulting action is
shown in Figure 12-11.

You might have heard of Google’s MapReduce programming model. The similarity
between the programming model’s name and the Java method names map and
reduce is not a coincidence.

FIGURE 12-10:
The reduce

method adds two
values from an

incoming stream.

FIGURE 12-11:
The reduce

method
multiplies values

from an incoming
stream.

346 PART 4 Smart Java Techniques

Taken as a whole, the entire assembly line shown in Figure 12-9 adds up the
prices of DVDs sold. Listing 12-5 contains a complete program using the streams
and lambda expressions of Figure 12-9.

LISTING	12-5:	 Living the Functional Way of Life

import java.text.NumberFormat;

import java.util.ArrayList;

public class TallySales {

 public static void main(String[] args) {

 ArrayList<Sale> sales = new ArrayList<>();

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 fillTheList(sales);

 double total = sales.stream()

 .filter((sale) -> sale.getItem().equals("DVD"))

 .map((sale) -> sale.getPrice())

 .reduce(0.0, (price1, price2) -> price1 + price2);

 System.out.println(currency.format(total));

 }

 static void fillTheList(ArrayList<Sale> sales) {

 sales.add(new Sale("DVD", 15.00));

 sales.add(new Sale("Book", 12.00));

 sales.add(new Sale("DVD", 21.00));

 sales.add(new Sale("CD", 5.25));

 }

}

The code in Listing 12-5 requires Java 8 or later. If your IDE is set for an earlier
Java version, you might have to tinker with the IDE’s settings. You may even have
to download a newer version of Java.

The boldface code in Listing 12-5 is one big Java assignment statement. The right
side of the statement contains a sequence of method calls. Each method call
returns an object, and each such object is the thing before the dot in the next
method call. That’s how you form the assembly line.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 347

For example, near the start of the boldface code, the name sales refers to an
ArrayList object. Each ArrayList object has a stream method. In Listing 12-5,
sales.stream() is a call to that ArrayList object’s stream method.

The stream method returns an instance of Java’s Stream class. (What a surprise!)
So sales.stream() refers to a Stream object. (See Figure 12-12.)

Every Stream object has a filter method. So

sales.stream().filter ((sale) -> sale.getItem().equals("DVD"))

is a call to the Stream object’s filter method. (Refer to Figure 12-12.)

The pattern continues. The Stream object’s map method returns yet another
Stream object — a Stream object containing prices. (See Figure 12-13.) To that
Stream of prices you apply the reduce method, which yields one double value —
the total of the DVD prices. (See Figure 12-14.)

FIGURE 12-12:
Getting all
DVD sales.

FIGURE 12-13:
Getting the price

from each
DVD sale.

348 PART 4 Smart Java Techniques

Why bother?
The chain of method calls in Listing 12-5 accomplishes everything that the loop in
Listing 12-4 accomplishes. But the code in Figure 12-14 uses concepts from func-
tional programming. What’s the big deal? Are you better off with Listing 12-5 than
with Listing 12-4?

You are. For the past several years, the big trend in chip design has been multicore
processors. With several cores, a processor can execute several statements at the
same time, speeding up a program’s execution by a factor of 2, or 4 or 8 or even
more. Programs run much faster if you divide the work among several cores. But
how do you divide the work?

You can modify the imperative code in Listing 12-4. For example, with some fancy
features, you can hand different loop iterations to different cores. But the result-
ing code is messy. For the code to work properly, you have to micromanage the
loop iterations, checking carefully to make sure that the final total is correct.

In contrast, the functional code is easy to modify. To take advantage of multicore
processors, you change only one word in Listing 12-5!

sales.parallelStream()

 .filter((sale) -> sale.getItem().equals("DVD"))

 .map((sale) -> sale.getPrice())

 .reduce(0.0, (price1, price2) -> price1 + price2);

In Listing 12-5, the stream() method call creates a serial stream. With a serial
stream, Java does its processing one sale at a time. But a call to parallelStream()
creates a slightly different kind of stream: a parallel stream. With a parallel stream,
Java divides the work among the number of cores in the computer’s processor (or
according to some other useful measure of computing power). If you have 4 million
sales and four cores, each core processes 1 million of the sales.

Each core works independently of the others, and each core dumps its result into
a final reduce method. The reduce method combines the cores’ results into a final
tally. In the best possible scenario, all the work gets done in one-fourth of the
time it would take with an ordinary serial stream.

FIGURE 12-14:
Getting the total

price of all
DVD sales.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 349

When you read the preceding paragraph, don’t gloss over the phrase best possible
scenario. Parallelism isn’t magic. And sometimes, parallelism isn’t your friend. Con-
sider the situation in which you have only 20 sale amounts to tally. The time it takes
to divide the problem into four groups of 5 sales each far exceeds the amount of time
you save in using all four cores. In addition, some problems don’t lend themselves
to parallel processing. Imagine that the price of an item depends on the number of
similar items being sold. In that case, you can’t divide the problem among four
independently operating cores. If you try, each core has to know what the other
cores are doing. You lose the advantage of having four threads of execution.

NO VARIABLES? NO PROBLEM!
Consider the problems posed at the start of the earlier section “Functional
Programming.” Several clients try to update Oracle’s stock price at the same time, or two
visitors try to buy the same item on a website. The source of the problem is shared data.
How many clients share access to Oracle’s stock price? How many customers share
access to a web page’s Purchase button? How many of your processor’s cores can
modify the same variable’s value? If you get rid of data sharing, your multicore process-
ing problems go away.

In imperative programming, a variable is a place where statements share their values
with one another. Can you avoid using variables in your code?

Compare the loop in Listing 12-4 with the functional programming code in Listing 12-5.
In Listing 12-4, the total variable is shared among all loop iterations. Because each
 iteration can potentially change the value of total, you can’t assign each iteration to a
different processor core. If you did, you’d risk having two cores updating the total at the
same time. (Chances are good that, because of the simultaneous updating, neither core
would do its update correctly!) But the functional programming code in Listing 12-5 has
no total variable. A running total plays no role in the functional version of the code.
Instead, in Listing 12-5, the reduce method applies the sum operation to values coming
from a stream. This incoming stream pops out of the previous method call (the map
method), so the incoming stream has no name. That’s nice. You don’t even need a
 variable to store a stream of values.

In imperative programming, a variable is a place where statements share their values
with one another. But functional programming shuns variables. So, when you do func-
tional programming, you don’t have a lot of data sharing. Many of the difficulties associ-
ated with multicore processors vanish into thin air. Your code can take advantage of
many cores at the same time. When you write the code, you don’t worry about data being
shared among the cores. It’s an elegant solution to an important computing problem.

350 PART 4 Smart Java Techniques

Method references
Take a critical look at the last lambda expression in Listing 12-5:

(price1, price2) -> price1 + price2)

This expression does roughly the same work as a sum method. (In fact, you can find
a sum method’s declaration in the earlier section “Lambda expressions.”) If your
choice is between typing a 3-line sum method and typing a 1-line lambda expres-
sion, you’ll probably choose the lambda expression. But what if you have a third
alternative? Rather than type your own sum method, you can refer to an existing
sum method. Using an existing method is the quickest and safest thing to do.

As luck would have it, Java’s Double class contains a static sum method. You don’t
have to create your own sum method. If you run the following code:

double i = 5.0, j = 7.0;

System.out.println(Double.sum(i, j));

the computer displays 12.0. So, rather than type the price1 + price2 lambda
expression in Listing 12-5, you can create a method reference — an expression that
refers to an existing method.

sales.stream()

 .filter((sale) -> sale.getItem().equals("DVD"))

 .map((sale) -> sale.getPrice())

 .reduce(0.0, Double :: sum);

The expression Double::sum refers to the sum method belonging to Java’s Double
class. When you use this Double::sum method reference, you do the same thing
that the last lambda expression does in Listing 12-5. Everybody is happy.

For information about static methods, see Chapter 10.

You can always try the programming challenges that you dream up on your own.
If you don’t have any ideas to give you practice with functional programming,
I have a couple of suggestions for you:

 » Each employee has a name and a performance evaluation score. Find the
total amount of money that you’ll pay in bonuses if you give a $100 bonus to
each employee whose score is 3 or higher.

 » Each recipe has a name, a list of ingredients (some of which involve meat
products), and an estimated preparation time. Find the average time estimate
for cooking one of the vegetarian recipes.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 351

IN THIS CHAPTER

 » Recovering from bad input and other
nasty situations

 » Making your code (more or less)
crash proof

 » Defining your own exception class

Looking Good When
Things Take Unexpected
Turns

September 9, 1945: A moth flies into one of the relays of the Harvard Mark II
 computer and gums up the works. This becomes the first recorded case of a
real computer bug.

April 19, 1957: Herbert Bright, manager of the data processing center at Westing-
house in Pittsburgh, receives an unmarked deck of computer punch cards in the
mail (which is like getting an unlabeled CD-ROM in the mail today). Mr. Bright
guesses that this deck comes from the development team for FORTRAN — the
first computer programming language. He’s been waiting a few years for this
software. (No web downloads were available at the time.)

Armed with nothing but this good guess, Bright writes a small FORTRAN program
and tries to compile it on his IBM 704. (The IBM 704 lives in its own, specially
built, 2,000-square-foot room. With vacuum tubes instead of transistors, the
machine has a whopping 32K of RAM. The operating system has to be loaded from
tape before the running of each program, and a typical program takes between
two and four hours to run.) After the usual waiting time, Bright’s attempt to

Chapter 13

352 PART 4 Smart Java Techniques

compile a FORTRAN program comes back with a single error: a missing comma in
one of the statements. Bright corrects the error, and the program runs like a
charm.

July 22, 1962: Mariner I, the first US spacecraft aimed at another planet, is destroyed
when it behaves badly four minutes after launch. The bad behavior is attributed to
a missing bar (like a hyphen) in the formula for the rocket’s velocity.

Around the same time, orbit computation software at NASA is found to contain the
incorrect statement DO 10 I=1.10 (instead of the correct DO 10 I=1,10). In
 modern notation, this is like writing do10i = 1.10 in place of for (int i=1;
i<=10; i++). The change from a comma to a period turns a loop into an assign-
ment statement.

January 1, 2000: The Year 2000 Problem wreaks havoc on the modern world.

Any historically accurate facts in these notes were borrowed from the following
sources: the Computer Folklore newsgroup (https://groups.google.com/
forum/#!forum/alt.folklore.computers), the Free On-line Dictionary of Com-
puting (http://foldoc.org), Computer magazine (www.computer.org/computer-
magazine/), and other web pages of the IEEE (www.computer.org).

Handling Exceptions
You’re taking inventory. This means counting item after item, box after box, and
marking the numbers of such things on log sheets, in little handheld gizmos, and
into forms on computer keyboards. A particular part of the project involves enter-
ing the number of boxes that you find on the Big Dusty Boxes That Haven’t Been
Opened Since Year One shelf. Rather than break the company’s decades-old habit,
you decide not to open any of these boxes. You arbitrarily assign the value $3.25 to
each box.

Listing 13-1 shows the software to handle this bit of inventory. The software has
a flaw, which is revealed in Figure 13-1. When the user enters a whole number
value, things are okay. But when the user enters something else (like the
 number 3.5), the program comes crashing to the ground. Surely something can be
done about this. Computers are stupid, but they’re not so stupid that they should
fail royally when a user enters an improper value.

https://groups.google.com/forum/#!forum/alt.folklore.computers
https://groups.google.com/forum/#!forum/alt.folklore.computers
http://foldoc.org
https://www.computer.org/computer-magazine/
https://www.computer.org/computer-magazine/
http://www.computer.org

CHAPTER 13 Looking Good When Things Take Unexpected Turns 353

LISTING 13-1: Counting Boxes

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryA {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 keyboard.close();

 }

}

The key to fixing a program bug is examining the message that appears when the
program crashes. The inventory program’s message says java.lang.Number
FormatException. That means a class named NumberFormatException is in the
java.lang API package. Somehow, the call to Integer.parseInt brought this
NumberFormatException class out of hiding.

For a brief explanation of the Integer.parseInt method, see Chapter 11.

Well, here’s what’s going on. The Java programming language has a mechanism
called exception handling. With exception handling, a program can detect that
things are about to go wrong and respond by creating a brand-new object. In the
official terminology, the program is said to be throwing an exception. That new

FIGURE 13-1:
Three separate

runs of the code
in Listing 13-1.

354 PART 4 Smart Java Techniques

object, an instance of the Exception class, is passed like a hot potato from one
piece of code to another until some piece of code decides to catch the exception.
When the exception is caught, the program executes some recovery code, buries
the exception, and moves on to the next normal statement as if nothing had ever
happened. The process is illustrated in Figure 13-2.

The whole thing is done with the aid of several Java keywords. These keywords are
described in this list:

 » throw: Creates a new exception object.

 » throws: Passes the buck from a method up to whatever code called the
method.

 » try: Encloses code that has the potential to create a new exception object.
In the usual scenario, the code inside a try clause contains calls to methods
whose code can create one or more exceptions.

 » catch: Deals with the exception, buries it, and then moves on.

So the truth is out. Through some chain of events like the one shown in Figure 13-2,
the method Integer.parseInt can throw a NumberFormatException. When you
call Integer.parseInt, this NumberFormatException is passed on to you.

FIGURE 13-2:
Throwing,

passing, and
catching an
exception.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 355

The Java API (Application Programming Interface) documentation for the parse
Int method says, “Throws: NumberFormatException — if the string does not
contain a parsable integer.” Once in a while, reading the documentation actually
pays.

If you call yourself a hero, you’d better catch the exception so that all the other
code can get on with its regular business. Listing 13-2 shows the catching of an
exception.

LISTING 13-2: A Hero Counts Boxes

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryB {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 } catch (NumberFormatException e) {

 out.println("That's not a number.");

 }

 keyboard.close();

 }

}

Figure 13-3 shows three runs of the code from Listing 13-2. When a misguided
user types three instead of 3, the program maintains its cool by displaying
That's not a number. The trick is to enclose the call to Integer.parseInt inside
a try clause. If you do this, the computer watches for exceptions when any
 statement inside the try clause is executed. If an exception is thrown, the com-
puter jumps from inside the try clause to a catch clause below it. In Listing 13-2,
the computer jumps directly to the catch (NumberFormatException e) clause.
The computer executes the println statement inside the clause and then marches

356 PART 4 Smart Java Techniques

on with normal processing. (If there were statements in Listing 13-2 after the end
of the catch clause, the computer would go on and execute them.)

An entire try-catch assembly — complete with a try clause, catch clause, and
what-have-you — is called a try statement. Sometimes, for emphasis, I call it a
try-catch statement.

The parameter in a catch clause
Take a look at the catch clause in Listing 13-2 and pay particular attention to the
words (NumberFormatException e). This looks a lot like a method’s parameter
list, doesn’t it? In fact, every catch clause is like a little mini-method with its own
parameter list. The parameter list always has an exception type name and then a
parameter.

In Listing 13-2, I don’t do anything with the catch clause’s e parameter, but I
certainly could if I wanted to. Remember: The exception that’s thrown is an
object — an instance of the NumberFormatException class. When an exception is
caught, the computer makes the catch clause’s parameter refer to that exception
object. In other words, the name e stores a bunch of information about the excep-
tion. To take advantage of this, you can call some of the exception object’s
methods.

} catch (NumberFormatException e) {

 out.println("Message: ***" + e.getMessage() + "***");

 e.printStackTrace();

}

With this new catch clause, a run of the inventory program may look like the
run shown in Figure 13-4. When you call getMessage, you fetch some detail about
the exception. (In Figure 13-4, the detail is Message: ***For input string:
"three"***.) When you call printStackTrace, you get some additional informa-
tion; namely, a display showing the methods that were running at the moment
when the exception was thrown. (In Figure 13-4, the display includes Integer.
parseInt and the main method.) Both getMessage and printStackTrace present
information to help you find the source of the program’s difficulties.

FIGURE 13-3:
Three runs of

the code in
Listing 13-2.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 357

When you mix System.out.println calls with printStackTrace calls, the order
in which Java displays the information is not predictable. For example, in
 Figure 13-4, the text Message: ***For input string: "three"*** may appear
before or after the stack trace. If the ordering of this output matters to you, change
out.println("Message: ***" to System.err.println("Message: ***".

Exception types
What else can go wrong today? Are there other kinds of exceptions — things that
don’t come from the NumberFormatException class? Sure, plenty of different
exception types are out there. You can even create one of your own. You wanna
try? If so, look at Listings 13-3 and 13-4.

LISTING 13-3: Making Your Own Kind of Exception

@SuppressWarnings("serial")

class OutOfRangeException extends Exception {

}

LISTING 13-4: Using Your Custom-Made Exception

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryC {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

FIGURE 13-4:
Calling an

exception object’s
methods.

(continued)

358 PART 4 Smart Java Techniques

 if (numBoxes < 0) {

 throw new OutOfRangeException();

 }

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 } catch (NumberFormatException e) {

 out.println("That's not a number.");

 } catch (OutOfRangeException e) {

 out.print(numBoxesIn);

 out.println("? That's impossible!");

 }

 keyboard.close();

 }

}

Listings 13-3 and 13-4 remedy a problem that cropped up earlier, in Figure 13-3.
Look at the last of the three runs in Figure 13-3. The user reports that the shelves
have –25 boxes, and the computer takes this value without blinking an eye. The
truth is that you would need a black hole (or some other exotic space-time warp-
ing phenomenon) to have a negative number of boxes on any shelf in your ware-
house. So the program should get upset if the user enters a negative number of
boxes, which is what the code in Listing 13-4 does. To see the upset code, look at
Figure 13-5.

The code in Listing 13-3 declares a new kind of exception class: OutOfRange
Exception. In many situations, typing a negative number would be just fine, so
OutOfRangeException isn’t built in to the Java API. However, in the inventory
program, a negative number should be flagged as an anomaly.

The OutOfRangeException class in Listing 13-3 wins the award for the shortest
self-contained piece of code in this book. The class’s code is just a declaration line
and an empty pair of braces. The code’s operative phrase is extends Exception.
Being a subclass of the Java API Exception class allows any instance of the
OutOfRangeException class to be thrown.

FIGURE 13-5:
Three runs of the

code from
Listings 13-3

and 13-4.

LISTING 13-4: (continued)

CHAPTER 13 Looking Good When Things Take Unexpected Turns 359

Back in Listing 13-4, a new OutOfRangeException instance is thrown. When this
happens, the catch clause (OutOfRangeException e) catches the instance. The
clause echoes the user’s input and displays the message That's impossible!

The text @SuppressWarnings("serial") in Listing 13-3 is a Java annotation.
For an introduction to annotations, see Chapter 8. For a few words about the
SuppressWarnings annotation, see Chapter 9.

If you use Eclipse, you might see a yellow warning marker next to the throw new
OutOfRangeException() line in Listing 13-4. When you hover the pointer over
the warning marker, Eclipse says, Resource leak: 'keyboard' is not closed
at this location. Eclipse is being persnickety to make sure that your code even-
tually executes the keyboard.close() statement. (Yes, under certain circum-
stances, throwing the OutOfRangeException can cause the program to skip the
keyboard.close() statement. But no, that can’t happen when you run the code in
 Listing 13-4.) In my opinion, you can safely ignore this warning.

Who’s going to catch the exception?
Take one more look at Listing 13-4. Notice that more than one catch clause can
accompany a single try clause. When an exception is thrown inside a try clause,
the computer starts going down the accompanying list of catch clauses. The com-
puter starts at whatever catch clause comes immediately after the try clause and
works its way down the program’s text.

For each catch clause, the computer asks itself, “Is the exception that was just
thrown an instance of the class in this clause’s parameter list?”

 » If not, the computer skips this catch clause and moves on to the next catch
clause in line.

 » If so, the computer executes this catch clause and then skips past all other
catch clauses that come with this try clause. The computer goes on and
executes whatever statements come after the whole try-catch statement.

For some concrete examples, see Listings 13-5 and 13-6.

LISTING 13-5: Yet Another Exception

@SuppressWarnings("serial")

class NumberTooLargeException extends OutOfRangeException {

}

360 PART 4 Smart Java Techniques

LISTING 13-6: Where Does the Buck Stop?

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryD {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 if (numBoxes < 0) {

 throw new OutOfRangeException();

 }

 if (numBoxes > 1000) {

 throw new NumberTooLargeException();

 }

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 }

 catch (NumberFormatException e) {

 out.println("That's not a number.");

 }

 catch (OutOfRangeException e) {

 out.print(numBoxesIn);

 out.println("? That's impossible!");

 }

 catch (Exception e) {

 out.print("Something went wrong, ");

 out.print("but I'm clueless about what ");

 out.println("it actually was.");

 }

 out.println("That's that.");

 keyboard.close();

 }

}

CHAPTER 13 Looking Good When Things Take Unexpected Turns 361

To run the code in Listings 13-5 and 13-6, you need one additional Java program
file. You need the OutOfRangeException class in Listing 13-3.

Listing 13-6 addresses the scenario in which you have limited shelf space. You
don’t have room for more than 1,000 boxes, but once in a while the program asks
how many boxes you have, and somebody enters the number 100000 by accident.
In cases like this, Listing 13-6 does a quick reality check. Any number of boxes
over 1,000 is tossed out as being unrealistic.

Listing 13-6 watches for a NumberTooLargeException, but to make life more
interesting, Listing 13-6 doesn’t have a catch clause for the NumberTooLarge
Exception. In spite of this, everything still works out just fine. It’s fine because
NumberTooLargeException is declared to be a subclass of OutOfRangeException,
and Listing 13-6 has a catch clause for the OutOfRangeException.

You see, because NumberTooLargeException is a subclass of OutOfRange
Exception, any instance of NumberTooLargeException is just a special kind of
OutOfRangeException. So, in Listing 13-6, the computer may start looking for a
clause to catch a NumberTooLargeException. When the computer stumbles upon
the OutOfRangeExceptioncatch clause, the computer says, “Okay, I’ve found a
match. I’ll execute the statements in this catch clause.”

To keep from having to write this whole story over and over again, I introduce
some new terminology. I say that the catch clause with parameter OutOfRange
Exception matches the NumberTooLargeException that’s been thrown. I call this
catch clause a matching catch clause.

The following list describes different things that the user may do and how the
computer responds. As you read, you can follow along by looking at the runs
shown in Figure 13-6:

FIGURE 13-6:
Four runs of

the code from
Listing 13-6.

362 PART 4 Smart Java Techniques

 » The user enters an ordinary whole number, like the number 3. All
statements in the try clause are executed. Then the computer skips past all
the catch clauses and executes the code that comes immediately after all the
catch clauses. (See Figure 13-7.)

 » The user enters something that’s not a whole number, like the word fish.
The code throws a NumberFormatException. The computer skips past the
remaining statements in the try clause. The computer executes the state-
ments inside the first catch clause — the clause whose parameter is of type
NumberFormatException. Then the computer skips past the second and
third catch clauses and executes the code that comes immediately after all
the catch clauses. (See Figure 13-8.)

 » The user enters a negative number, like the number –25. The code throws
an OutOfRangeException. The computer skips past the remaining state-
ments in the try clause. The computer even skips past the statements in the
first catch clause. (After all, an OutOfRangeException isn’t any kind of a
NumberFormatException. The catch clause with parameter NumberFormat
Exception isn’t a match for this OutOfRangeException.) The computer
executes the statements inside the second catch clause — the clause whose
parameter is of type OutOfRangeException. Then the computer skips past
the third catch clause and executes the code that comes immediately after
all the catch clauses. (See Figure 13-9.)

FIGURE 13-7:
No exception

is thrown.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 363

 » The user enters an unrealistically large number, like the number 1001.
The code throws a NumberTooLargeException. The computer skips past the
remaining statements in the try clause. The computer even skips past the
statements in the first catch clause. (After all, a NumberTooLargeException
isn’t any kind of NumberFormatException.)

But, according to the code in Listing 13-5, NumberTooLargeException is a
subclass of OutOfRangeException. When the computer reaches the second
catch clause, the computer says, “Hmm! A NumberTooLargeException is a

FIGURE 13-8:
A Number

FormatException
is thrown.

FIGURE 13-9:
An OutOfRange
Exception is

thrown.

364 PART 4 Smart Java Techniques

kind of OutOfRangeException. I’ll execute the statements in this catch
clause — the clause with parameter of type OutOfRangeException.” In other
words, it’s a match.

The computer executes the statements inside the second catch clause. Then
the computer skips the third catch clause and executes the code that comes
immediately after all the catch clauses. (See Figure 13-10.)

 » Something else, something quite unpredictable, happens. (I don’t know
what.) With my unending urge to experiment, I reached into the try clause of
Listing 13-6 and added a statement that throws an IOException. No reason —
I just wanted to see what would happen.

When the code threw an IOException, the computer skipped past the
remaining statements in the try clause. Then the computer skipped past the
statements in the first and second catch clauses. When the computer
reached the third catch clause, I could hear the computer say, “Hmm! An
IOException is a kind of Exception. I’ve found a matching catch clause — a
clause with a parameter of type Exception. I’ll execute the statements in this
catch clause.”

So the computer executed the statements inside the third catch clause. Then
the computer executed the code that comes immediately after all the catch
clauses. (See Figure 13-11.)

FIGURE 13-10:
A Number
TooLarge

Exception is
thrown.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 365

When the computer looks for a matching catch clause, the computer latches on to
the topmost clause that fits one of the following descriptions:

 » The clause’s parameter type is the same as the type of the exception that
was thrown.

 » The clause’s parameter type is a superclass of the exception’s type.

If a better match appears farther down the list of catch clauses, that’s just too
bad. Imagine that you added a catch clause with a parameter of type Number
TooLargeException to the code in Listing 13-6. Imagine, also, that you put this
new catch clause after the catch clause with parameter of type OutOfRange
Exception. Then, because NumberTooLargeException is a subclass of the Out
OfRangeException class, the code in the new NumberTooLargeException clause
would never be executed. That’s just the way the cookie crumbles.

Catching two or more exceptions at a time
Starting with Java 7, you can catch more than one kind of exception in a single
catch clause. For example, in a particular inventory program, you might not want
to distinguish between the throwing of a NumberFormatException and your own
OutOfRangeException. In that case, you can rewrite part of Listing 13-6 this way:

FIGURE 13-11:
An IOException

is thrown.

366 PART 4 Smart Java Techniques

try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 if (numBoxes < 0) {

 throw new OutOfRangeException();

 }

 if (numBoxes > 1000) {

 throw new NumberTooLargeException();

 }

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

}

catch (NumberFormatException | OutOfRangeException e) {

 out.print(numBoxesIn);

 out.println("? That's impossible!");

}

catch (Exception e) {

 out.print("Something went wrong, ");

 out.print("but I'm clueless about what ");

 out.println("it actually was.");

}

The pipe symbol, |, tells Java to catch either a NumberFormatException or an
OutOfRangeException. If you throw an exception of either type, the program
 displays the value of numBoxesIn followed by the text ? That's impossible! If
you throw an exception that is neither a NumberFormatException nor an Out
OfRangeException, the program jumps to the last catch clause and displays
Something went wrong, but I'm clueless

Throwing caution to the wind
Are you one of those obsessive-compulsive types? Do you like to catch every pos-
sible exception before the exception can possibly crash your program? Well, watch
out. Java doesn’t let you become paranoid. You can’t catch an exception if the
exception has no chance of being thrown.

Consider the following code. The code has an innocent i++ statement inside a try
clause. That’s fair enough. But then the code’s catch clause is pretending to catch
an IOException:

// Bad code!

try {

 i++;
} catch (IOException e) {

 e.printStackTrace();

}

CHAPTER 13 Looking Good When Things Take Unexpected Turns 367

Who is this catch clause trying to impress? A statement like i++ doesn’t do
any input or output. The code inside the try clause can’t possibly throw an
IOException. So the compiler comes back and says, “Hey, catch clause. Get real.
Get off your high horse.” Well, to be a bit more precise, the compiler’s reprimand
reads as follows:

exception java.io.IOException is never thrown

in body of corresponding try statement

Doing useful things
So far, each example in this chapter catches an exception, prints a “bad input”
message, and then closes up shop. Wouldn’t it be nice to see a program that actu-
ally carries on after an exception has been caught? Well, it’s time for something
nice. Listing 13-7 has a try-catch statement inside a loop. The loop keeps run-
ning until the user types something sensible.

LISTING 13-7: Keep Pluggin’ Along

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryLoop {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 boolean gotGoodInput = false;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 do {

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 gotGoodInput = true;

 } catch (NumberFormatException e) {

 out.println();

 out.println("That's not a number.");

 }

 } while (!gotGoodInput);

(continued)

368 PART 4 Smart Java Techniques

 out.println("That's that.");

 keyboard.close();

 }

}

Figure 13-12 shows a run of the code from Listing 13-7. In the first three attempts,
the user types just about everything except a valid whole number. At last, the
fourth attempt is a success. The user types 3, and the computer leaves the loop.

Our friends, the good exceptions
A rumor is going around that Java exceptions always come from unwanted, erro-
neous situations. Although there’s some truth to this rumor, the rumor isn’t
entirely accurate. Occasionally, an exception arises from a normal, expected
occurrence. Take, for instance, the detection of the end of a file. The following
code makes a copy of a file:

try {

 while (true) {

 dataOut.writeByte(dataIn.readByte());

 }

} catch (EOFException e) {

 numFilesCopied = 1;

}

To copy bytes from dataIn to dataOut, you just go into a while loop. With its
true condition, the while loop is seemingly endless. But eventually, you reach the
end of the dataIn file. When this happens, the readByte method throws an
EOFException (an end-of-file exception). The throwing of this exception sends
the computer out of the try clause and out of the while loop. From there, you do
whatever you want to do in the catch clause and then proceed with normal
processing.

LISTING 13-7: (continued)

FIGURE 13-12:
A run of the code

in Listing 13-7.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 369

Try your hand at these coding tasks:

 » Add try-catch statements to keep the following code from crashing:

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 String[] words = new String[5];

 int i = 0;

 do {

 words[i] = keyboard.next();

 } while (!words[i++].equals("Quit"));

 for (int j = 0; j < 5; j++) {
 System.out.println(words[j].length());

 }

 keyboard.close();

 }

}

 » In Listing 13-6, the price of each box and the number of boxes that are too
large are fixed values. Make improvements to the code so that the user enters
both of those values. Remember that some values for these quantities don’t
make sense. For example, a negative number of boxes is never too many
boxes. Use try-catch statements to handle inappropriate user input.

Handle an Exception or Pass the Buck
So you’re getting to know Java, hey? What? You say you’re all the way up to
 Chapter 13? I’m impressed. You must be a hard worker. But remember, all work
and no play . . .

So, how about taking a break? A little nap could do you a world of good. Is ten
seconds okay? Or is that too long? Better make it five seconds.

370 PART 4 Smart Java Techniques

Listing 13-8 has a program that’s supposed to pause its execution for five seconds.
The problem is that the program in Listing 13-8 is incorrect. Take a look at
 Listing 13-8 for a minute, and then I’ll tell you what’s wrong with it.

LISTING 13-8: An Incorrect Program

/*

 * This code does not compile.

 */

import static java.lang.System.out;

public class NoSleepForTheWeary {

 public static void main(String args[]) {

 out.print("Excuse me while I nap ");

 out.println("for just five seconds...");

 takeANap();

 out.println("Ah, that was refreshing.");

 }

 static void takeANap() {

 Thread.sleep(5000);

 }

}

The strategy in Listing 13-8 isn’t bad. The idea is to call the sleep method, which
is defined in the Java API. This sleep method belongs to the API Thread class.
When you call the sleep method, the number that you feed it is a number of
 milliseconds. So Thread.sleep(5000) means pause for five seconds.

The problem is that the code inside the sleep method can throw an exception.
This kind of exception is an instance of the InterruptedException class. When
you try to compile the code in Listing 13-8, you get a message such as

unreported exception java.lang.InterruptedException;

must be caught or declared to be thrown

Maybe the message reads

Unhandled exception type InterruptedException

One way or another, the message is unwelcome.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 371

For the purpose of understanding exceptions in general, you don’t need to know
exactly what an InterruptedException is. All you really have to know is that a
call to Thread.sleep can throw one of these InterruptedException objects. But
if you’re really curious, an InterruptedException is thrown when some code
interrupts some other code’s sleep. Imagine that you have two pieces of code run-
ning at the same time. One piece of code calls the Thread.sleep method. At the
same time, another piece of code calls the interrupt method. By calling the
interrupt method, the second piece of code brings the first code’s Thread.sleep
method to a screeching halt. The Thread.sleep method responds by spitting out
an InterruptedException.

Now, the Java programming language has two kinds of exceptions. They’re called
checked and unchecked exceptions:

 » The potential throwing of a checked exception must be acknowledged
in the code.

 » The potential throwing of an unchecked exception doesn’t need to be
acknowledged in the code.

An InterruptedException is one of Java’s checked exception types. When you
call a method that has the potential to throw an InterruptedException, you need
to acknowledge that exception in the code.

Now, when I say that an exception is acknowledged in the code, what do I really
mean?

// The author wishes to thank that InterruptedException,

// without which this code could not have been written.

No, that’s not what it means to be acknowledged in the code. Acknowledging an
exception in the code means one of two things:

 » The statements (including method calls) that can throw the exception are
inside a try clause. That try clause has a catch clause with a matching
exception type in its parameter list.

 » The statements (including method calls) that can throw the exception are
inside a method that has a throws clause in its header. The throws clause
contains a matching exception type.

If you’re confused by the wording of these two bullets, don’t worry. The next two
listings illustrate the points made in the bullets.

372 PART 4 Smart Java Techniques

In Listing 13-9, the method call that can throw an InterruptedException is
inside a try clause. That try clause has a catch clause with exception type
InterruptedException.

LISTING 13-9: Acknowledging with a try-catch Statement

import static java.lang.System.out;

public class GoodNightsSleepA {

 public static void main(String args[]) {

 out.print("Excuse me while I nap ");

 out.println("for just five seconds...");

 takeANap();

 out.println("Ah, that was refreshing.");

 }

 static void takeANap() {

 try {

 Thread.sleep(5000);

 } catch (InterruptedException e) {

 out.println("Hey, who woke me up?");

 }

 }

}

It’s my custom, at this point in a section, to remind you that a run of Listing
Such-and-Such is shown in Figure So-and-So. But the problem here is that
 Figure 13-13 doesn’t do justice to the code in Listing 13-9. When you run
the program in Listing 13-9, the computer displays Excuse me while I nap for
just five seconds, pauses for five seconds, and then displays Ah, that was
refreshing. The code works because the call to the sleep method, which can
throw an InterruptedException, is inside a try clause. That try clause has a
catch clause whose exception is of type InterruptedException.

So much for acknowledging an exception with a try-catch statement. You can
acknowledge an exception another way, shown in Listing 13-10.

FIGURE 13-13:
A 5-second

pause before
the “Ah” line.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 373

LISTING 13-10: Acknowledging with throws

import static java.lang.System.out;

public class GoodNightsSleepB {

 public static void main(String args[]) {

 out.print("Excuse me while I nap ");

 out.println("for just five seconds...");

 try {

 takeANap();

 } catch (InterruptedException e) {

 out.println("Hey, who woke me up?");

 }

 out.println("Ah, that was refreshing.");

 }

 static void takeANap() throws InterruptedException {

 Thread.sleep(5000);

 }

}

To see a run of the code in Listing 13-10, refer to Figure 13-13. Once again,
 Figure 13-13 fails to capture the true essence of the run, but that’s okay. Just
remember that in Figure 13-13, the computer pauses for five seconds before it
displays Ah, that was refreshing.

The important part of Listing 13-10 is in the takeANap method’s header. That
header ends with throws InterruptedException. By announcing that it throws
an InterruptedException, method takeANap passes the buck. What this throws
clause really says is, “I realize that a statement inside this method has the poten-
tial to throw an InterruptedException, but I’m not acknowledging the exception
in a try-catch statement. Java compiler, please don’t bug me about this. Instead
of having a try-catch statement, I’m passing the responsibility for acknowledg-
ing the exception to the main method (the method that called the takeANap
method).”

Indeed, in the main method, the call to takeANap is inside a try clause. That try
clause has a catch clause with a parameter of type InterruptedException. So
everything is okay. Method takeANap passes the responsibility to the main method,
and the main method accepts the responsibility with an appropriate try-catch
statement. Everybody’s happy. Even the Java compiler is happy.

374 PART 4 Smart Java Techniques

To better understand the throws clause, imagine a volleyball game in which the
volleyball is an exception. When a player on the other team serves, that player is
throwing the exception. The ball crosses the net and comes right to you. If you
pound the ball back across the net, you’re catching the exception. But if you pass
the ball to another player, you’re using the throws clause. In essence, you’re say-
ing, “Here, other player. You deal with this exception.”

A statement in a method can throw an exception that’s not matched by a catch
clause. This includes situations in which the statement throwing the exception
isn’t even inside a try block. When this happens, execution of the program jumps
out of the method that contains the offending statement. Execution jumps back to
whatever code called the method in the first place.

A method can name more than one exception type in its throws clause. Just use
commas to separate the names of the exception types, as in the following
example:

throws InterruptedException, IOException, ArithmeticException

The Java API has hundreds of exception types. Several of them are subclasses of
the RuntimeException class. Anything that’s a subclass of RuntimeException
(or a sub-subclass, sub-sub-subclass, and so on) is unchecked. Any exception
that’s not a descendent of RuntimeException is checked. The unchecked excep-
tions include things that would be hard for the computer to predict. Such things
include the NumberFormatException (of Listings 13-2, 13-4, and others),
the ArithmeticException, the IndexOutOfBoundsException, the infamous
NullPointerException, and many others. When you write Java code, much of
your code is susceptible to these exceptions, but enclosing the code in try clauses
(or passing the buck with throws clauses) is completely optional.

The Java API also has its share of checked exceptions. The computer can readily
detect exceptions of this kind. So Java insists that, for an exception of this kind,
any potential exception-throwing statement is acknowledged with either a try
 statement or a throws clause. Java’s checked exceptions include the Interrupted
Exception (Listings 13-9 and 13-10), the IOException, the SQLException, and a
gang of other interesting exceptions.

I can’t think of a clever way to connect the “Try” in “TryItOut” with the try in
try-catch statements. If you think of something, scribble it in the margin on this
page. Then try these little challenges:

CHAPTER 13 Looking Good When Things Take Unexpected Turns 375

 » The following code doesn’t compile because the code throws an unacknowl-
edged FileNotFoundException:

// BAD CODE:

import java.io.File;

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 Scanner diskScanner = new Scanner(new File("numbers.txt"));

 int[] numerators = new int[5];

 int[] denominators = new int[5];

 int i = 0;

 while (diskScanner.hasNextInt()) {

 numerators[i] = diskScanner.nextInt();

 denominators[i] = diskScanner.nextInt();

 i++;
 }

 for (int j = 0; j < numerators.length; j++) {
 System.out.println(numerators[j] / denominators[j]);

 }

 diskScanner.close();

 }

}

Fix the unacknowledged FileNotFoundException so that the code compiles.
Then notice that, depending on the values in the numbers.txt file, some
other exceptions may be thrown during a run of the program. Add one or
more try-catch statements to display messages about these exceptions
without letting the program crash.

 » Add try-catch statements or throws clauses (or a mixture of these two
things) to fix the following broken code:

// BAD CODE:

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.EOFException;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

376 PART 4 Smart Java Techniques

  public class Main {

 public static void main(String[] args) {

 File fileIn = new File("input");

 FileInputStream fileInStrm = new FileInputStream(fileIn);

 DataInputStream dataInStrm = new DataInputStream(fileInStrm);

 File fileOut = new File("output");

 FileOutputStream fileOutStrm = new FileOutputStream(fileOut);

 DataOutputStream dataOutStrm = new DataOutputStream(fileOutStrm);

 int numFilesCopied = 0;

 try {

 while (true) {

 dataOutStrm.writeByte(dataInStrm.readByte());

 }

 } catch (EOFException e) {

 numFilesCopied = 1;

 }

 }

}

When you’ve gotten the code to compile, create a file named input and run
the code to see whether it creates the file named output.

Finishing the Job with a finally Clause
Once upon a time, I was a young fellow, living with my parents in Philadelphia,
just starting to drive a car. I was heading toward a friend’s house and thinking
about who-knows-what when another car came from nowhere and bashed my
car’s passenger door. This kind of thing is called a RunARedLightException.

Anyway, both cars were still drivable, and we were right in the middle of a busy
intersection. To avoid causing a traffic jam, we both pulled over to the nearest
curb. I fumbled for my driver’s license (which had a very young picture of me on
it) and opened the door to get out of my car.

And that’s when the second accident happened. As I was getting out of my car, a
city bus was coming by. The bus hit me and rolled me against my car a few times.
This kind of thing is called a DealWithLawyersException.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 377

The truth is that everything came out just fine. I was bruised but not battered. My
parents paid for the damage to the car, so I never suffered any financial conse-
quences. (I managed to pass on the financial burden by putting the RunARed
LightException into my throws clause.)

This incident helps to explain why I think the way I do about exception handling.
In particular, I wonder, “What happens if, while the computer is recovering from
one exception, a second exception is thrown?” After all, the statements inside a
catch clause aren’t immune to calamities.

Well, the answer to this question is anything but simple. For starters, you can put
a try statement inside a catch clause. This protects you against unexpected,
potentially embarrassing incidents that can crop up during the execution of the
catch clause. But when you start worrying about cascading exceptions, you open
up a very slimy can of worms. The number of scenarios is large, and things can
become complicated very quickly.

One not-too-complicated thing that you can do is to create a finally clause. Like
a catch clause, a finally clause comes after a try clause. The big difference is
that the statements in a finally clause are executed whether or not an exception
is thrown. The idea is, “No matter what happens, good or bad, execute the state-
ments inside this finally clause.” Listing 13-11 has an example.

LISTING 13-11: Jumping Around

import static java.lang.System.out;

public class DemoFinally {

 public static void main(String args[]) {

 try {

 doSomething();

 } catch (Exception e) {

 out.println("Exception caught in main.");

 }

 }

 static void doSomething() {

 try {

 out.println(0 / 0);

 } catch (Exception e) {

 out.println("Exception caught in doSomething.");

 out.println(0 / 0);

(continued)

378 PART 4 Smart Java Techniques

 } finally {

 out.println("I'll get printed.");

 }

 out.println("I won't get printed.");

 }

}

Normally, when I think about a try statement, I think about the computer recov-
ering from an unpleasant situation. The recovery takes place inside a catch clause,
and then the computer marches on to whatever statements come after the try
statement. Well, if something goes wrong during execution of a catch clause, this
picture can start looking different.

Listing 13-11 gets a workout in Figure 13-14. First, the main method calls do
Something. Then the stupid doSomething method goes out of its way to cause
trouble. The doSomething method divides 0 by 0, which is illegal and undoable in
anyone’s programming language. This foolish action by the doSomething method
throws an ArithmeticException, which is caught by the try statement’s one and
only catch clause.

Inside the catch clause, that lowlife doSomething method divides 0 by 0 again.
This time, the statement that does the division isn’t inside a protective try clause.
That’s okay, because an ArithmeticException isn’t checked. (It’s one of those
RuntimeException subclasses. It’s an exception that doesn’t have to be acknowl-
edged in a try or a throws clause. For details, see the preceding section.)

Well, checked or not, the throwing of another ArithmeticException causes con-
trol to jump out of the doSomething method. But, before leaving the doSomething
method, the computer executes the try statement’s last will and testament: the
statements inside the finally clause. That’s why in Figure 13-14 you see the
words I'll get printed.

Interestingly enough, you don’t see the words I won't get printed in
Figure 13-14. Because the catch clause’s execution throws its own, uncaught
exception, the computer never makes it down past the try-catch-finally
statement.

LISTING 13-11: (continued)

FIGURE 13-14:
Running the

code from
Listing 13-11.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 379

So the computer goes back to where it left off in the main method. Back in the main
method, word of the doSomething method’s ArithmeticException mishaps
causes execution to jump into a catch clause. The computer prints Exception
caught in main, and then this terrible nightmare of a run is finished.

At the end of the earlier section “Handle an Exception or Pass the Buck,” you add
exception-handling code to a program that makes a copy of a file. Along with your
code, you may see warnings telling you that you’ve forgotten to close dataInStrm
and dataOutStrm. Fix this by adding dataInStrm.close() and dataOutStrm.
close() calls inside finally clauses.

A try Statement with Resources
Imagine a program that gets input from two different files or from a Scanner and
a disk file. To make sure that you clean up properly, you put close method calls in
a finally clause. (See Listing 13-12.)

LISTING 13-12: Using Two Files

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class Main {

 public static void main(String args[]) {

 Scanner scan1 = null;

 Scanner scan2 = null;

 try {

 scan1 = new Scanner(new File("File1.txt"));

 scan2 = new Scanner(new File("File2.txt"));

 // Do useful stuff

 } catch (IOException e) {

 // Oops!

 } finally {

 scan1.close();

 scan2.close();

 System.out.println("Done!");

 }

 }

}

380 PART 4 Smart Java Techniques

In theory, the computer always executes scan1.close() and scan2.close() no
matter what goes wrong during execution of the try clause. But that’s theory.
In reality, another programmer (not you, of course) might modify the code by
closing scan1 in the middle of the try clause:

try {

 scan1 = new Scanner(new File("File1.txt"));

 scan2 = new Scanner(new File("File2.txt"));

 // Do useful stuff but also ...

 scan1.close();

 scan1 = null;

} catch (IOException e) {

 // Oops!

} finally {

 scan1.close();

 scan2.close();

 System.out.println("Done!");

}

Now you have a real predicament. Inside the finally clause, the value of scan1 is
null. The call to scan1.close() fails, so the program throws a NullPointer
Exception and stops running before reaching the call to scan2.close(). In the
worst of circumstances, scan2 isn’t closed and your program has File2.txt
locked up so that no other program can use the file.

When a program uses several resources (many files, a database and a file, or
whatever) the buildup of try statements becomes quite complicated. You can
make try statements within catch clauses and all kinds of crazy combinations.
But Java has a better way to solve the problem: In Java 7 (and later versions of
Java), you can create a try-with-resources statement. Listing 13-13 shows you how.

LISTING 13-13: Making Sure to Close Resources

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class NewMain {

 public static void main(String args[]) {

 try (Scanner scan1 = new Scanner(new File("File1.txt"));

 Scanner scan2 = new Scanner(new File("File2.txt"))) {

 // Do useful stuff

 } catch (IOException e) {

CHAPTER 13 Looking Good When Things Take Unexpected Turns 381

 // Oops!

 }

 System.out.println("Done!");

 }

}

In Listing 13-13, the declarations of scan1 and scan2 are in parentheses after
the word try. The parenthesized declarations tell Java to close scan1 and scan2
automatically after execution of the statements in the try clause. You can declare
several resources inside one try statement’s parentheses. When you do, Java
closes all the resources automatically after execution of the try clause’s
 statements. You can add catch clauses and a finally clause, if you want. You
can access all kinds of resources (files, databases, connections to servers, and
others) and have peace of mind knowing that Java will sever the connections
automatically.

Life is good.

At the end of the earlier section “Handle an Exception or Pass the Buck,” you add
exception-handling code to a program that makes a copy of a file. Along with your
code, you may see warnings telling you that you’ve forgotten to close dataInStrm
and dataOutStrm. In a subsequent section (“Finishing the Job with a finally
Clause”), you got rid of the warnings by adding dataInStrm.close() and data
OutStrm.close() calls inside finally clauses. Instead of adding calls to the
close method, fix the problem using a try-with-resources statement.

CHAPTER 14 Sharing Names among the Parts of a Java Program 383

IN THIS CHAPTER

 » Hiding names from other classes

 » Exposing names to other classes

 » Tweaking your code to find the right
middle ground

Sharing Names among
the Parts of a Java
Program

S
peaking of private fields and methods (and I do speak about these things in
this chapter) . . .

I’m eating lunch with some friends at work. “They can read your email,” says one
fellow. Another chimes in, “They know every single website that you visit. They
know what products you buy, what you eat for dinner, what you wear, what you
think. They even know your deepest, darkest secrets. Why, I wouldn’t be surprised
if they know when you’re going to die.”

A third voice enters the fray. “It’s getting to the point where you can’t blow your
nose without someone taking a record of it. I visited a website a few weeks ago,
and the page wished me Happy Birthday. How did they know it was me, and how
did they remember that it was my birthday?”

“Yeah,” says the first guy. “I have a tag on my car that lets me sail through toll
booths. It senses that I’m going through and puts the charge on my credit card
automatically. Every month, I get a list from the company showing where I’ve

Chapter 14

384 PART 4 Smart Java Techniques

been and when I was there. I’m amazed it doesn’t say whom I was visiting and
what I did when I got there.”

I think quietly to myself. I think about saying, “That’s just a bunch of baloney.
Personally, I’d be flattered if my employer, the government, or some big company
thought so much of me that they tracked my every move. I have enough trouble
getting people’s attention when I really want it. And most agencies that keep logs
of all my purchasing and viewing habits can’t even spell my name right when they
send me junk mail. ‘Hello, this is a courtesy call for Larry Burg. Is Mr. Burg at
home?’ Spying on people is really boring. I can just see the headline on the front
page of The Times: ‘Author of Java For Dummies Wears His Undershirt Inside Out!’
Big deal!”

I think for a few seconds, and then I say, “They’re out to get us. TV cameras!
That’s the next big thing — TV cameras everywhere.”

Access Modifiers
If you’ve read this far into Java For Dummies, 7th Edition, you probably know one
thing: Object-oriented programming is big on hiding details. Programmers who
write one piece of code shouldn’t tinker with the details inside another program-
mer’s code. It’s not a matter of security and secrecy. It’s a matter of modularity.
When you hide details, you keep the intricacies inside one piece of code from being
twisted and broken by another piece of code. Your code comes in nice, discrete,
manageable lumps. You keep complexity to a minimum. You make fewer mis-
takes. You save money. You help promote world peace.

Other chapters have plenty of examples of the use of private fields. When a field is
declared private, it’s hidden from all outside meddling. This hiding enhances
modularity, minimizes complexity, and so on.

Elsewhere in the annals of Java For Dummies, 7th Edition, are examples of things
that are declared public. Just like a public celebrity, a field that’s declared public is
left wide open. Plenty of people probably know what kind of toothpaste Elvis used,
and any programmer can reference a public field, even a field that’s not named
Elvis.

In Java, the words public and private are called access modifiers. No doubt you’ve
seen fields and methods without access modifiers in their declarations. A method
or field of this kind is said to have default access. Many examples in this book use
default access without making a big fuss about it. That’s okay in some chapters,

CHAPTER 14 Sharing Names among the Parts of a Java Program 385

but not in this chapter. In this chapter, I describe the nitty-gritty details about
default access.

And you can find out about yet another access modifier that isn’t used in any
example before this chapter. (At least, I don’t remember using it in any earlier
examples.) It’s the protected access modifier. Yes, this chapter covers some of
the slimy, grimy facts about protected access.

Classes, Access, and Multipart Programs
With this topic, you can become all tangled up in terminology, so you need to get
some basics out of the way. (Most of the terminology that you need comes from
Chapter 10, but it’s worth reviewing at the start of this chapter.) Here’s a fake
piece of Java code:

class MyClass {

 int myField; //a field (a member)

 void myMethod() { //a method (another member)

 int myOtherField; //a method-local variable (NOT a member)

 }

}

The comments on the right side of the code tell the whole story. Two kinds of
variables exist here: fields and method-local variables. This chapter isn’t about
method-local variables. It’s about methods and fields.

Believe me, carrying around the phrase methods and fields wherever you go isn’t
easy. It’s much better to give these things one name and be done with it. That’s
why both methods and fields are called members of a class.

Members versus classes
At this point, you make an important distinction. Think about Java’s public key-
word. As you may already know from earlier chapters, you can put public in front
of a member. For example, you can write

public static void main(String args[]) {

or

public amountInAccount = 50.22;

386 PART 4 Smart Java Techniques

These uses of the public keyword come as no big surprise. What you may not
already know is that you can put the public keyword in front of a class. For exam-
ple, you can write

public class Drawing {

 // Your code goes here

}

In Java, the public keyword has two slightly different meanings — one meaning
for members and another meaning for classes. Most of this chapter deals with the
meaning of public (and other such keywords) for members. The last part of this
chapter (appropriately titled “Access Modifiers for Java Classes”) deals with the
meaning for classes.

Access modifiers for members
Sure, this section is about members. But that doesn’t mean that you can ignore
Java classes. Members or not, the Java class is still where all the action takes place.
Each field is declared in a particular class, belongs to that class, and is a member
of that class. The same is true of methods. Each method is declared in a particular
class, belongs to that class, and is a member of that class. Can you use a certain
member name in a particular place in your code? To begin answering the question,
check whether that place is inside or outside of the member’s class:

 » If the member is private, only code that’s inside the member’s class can refer
directly to that member’s name:

class SomeClass {

 private int myField = 10;

}

class SomeOtherClass {

 public static void main(String args[]) {

 SomeClass someObject = new SomeClass();

 //This doesn't work:

 System.out.println(someObject.myField);

 }

}

CHAPTER 14 Sharing Names among the Parts of a Java Program 387

 » If the member is public, any code running in the same Java Virtual Machine
can refer directly to that member’s name.

class SomeClass {

 public int myField = 10;

}

class SomeOtherClass {

 public static void main(String args[]) {

 SomeClass someObject = new SomeClass();

 //This works:

 System.out.println(someObject.myField);

 }

}

Figures 14-1 through 14-3 illustrate the ideas in a slightly different way.

When you see this section’s examples, you may come to the wrong conclusion.
You may have this little conversation with yourself: “In the example with private
int myField, the code doesn’t work. But in the example with public int myField,
the code works. So, to have a better chance of getting my code to work, I should
make my fields public and avoid making them private. Right?”

FIGURE 14-1:
Several classes

and their
subclasses.

388 PART 4 Smart Java Techniques

No, dear reader. That’s not right!

Public fields are easy to use and even easier to misuse. The best way to engineer
your code is to make access to each field as restrictive as possible. If a field doesn’t
absolutely need to be public, try making it private. If other classes have to get or
set the field’s values, provide public getter and setter methods. And that leads
nicely into the next paragraph

FIGURE 14-2:
The range of code

in which a public
field or method

can be used
(shaded).

FIGURE 14-3:
The range of code
in which a private

field or method
can be used

(shaded).

CHAPTER 14 Sharing Names among the Parts of a Java Program 389

In one of this section’s examples, you can’t write someObject.myField because, in
SomeClass, the variable myField is declared to be private. Fix this by adding get-
ters and setters, and modify the someObject.myField reference appropriately.

Putting a drawing on a frame
To make this business about access modifiers clear, you need an example or two.
In this chapter’s first example, almost everything is public. With public access,
you don’t have to worry about who can use what.

The code for this first example comes in several parts. The first part, which is in
Listing 14-1, displays an ArtFrame. On the face of the ArtFrame is a Drawing. If all
the right pieces are in place, running the code of Listing 14-1 displays a window
like the one shown in Figure 14-4.

LISTING 14-1: Displaying a Frame

import com.burdbrain.drawings.Drawing;

import com.burdbrain.frames.ArtFrame;

class ShowFrame {

 public static void main(String args[]) {

 ArtFrame artFrame = new ArtFrame(new Drawing());

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

The code in Listing 14-1 creates a new ArtFrame instance. You may suspect that
ArtFrame is a subclass of a Java frame class, and that’s certainly the case. Chapter 9
says that Java frames are, by default, invisible. So, in Listing 14-1, to make the
ArtFrame instance visible, you call the setVisible method.

FIGURE 14-4:
An ArtFrame.

390 PART 4 Smart Java Techniques

Now notice that Listing 14-1 starts with two import declarations. The first import
declaration allows you to abbreviate the name Drawing from the com.burdbrain.
drawings package. The second import declaration allows you to abbreviate the
name ArtFrame from com.burdbrain.frames.

For a review of import declarations, see Chapter 4.

The detective in you may be thinking, “He must have written more code (code that
I don’t see here) and put that code in packages that he named com.burdbrain.drawings
and com.burdbrain.frames.” And, indeed, you are correct. To make Listing 14-1 work,
I create something called a Drawing, and I’m putting all my drawings in the com.
burdbrain.drawings package. I also need an ArtFrame class, and I’m putting all
such classes in my com.burdbrain.frames package.

So, really, what’s a Drawing? Well, if you’re so eager to know, look at
Listing 14-2.

LISTING 14-2: The Drawing Class

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 public int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

The code for the Drawing class is pretty slim — it contains a few int fields and a
paint method. That’s all. Well, when I create my classes, I try to keep ’em lean.
Anyway, here are some notes about my Drawing class:

 » At the top of the code is a package declaration. Lo and behold! I’ve made
my Drawing class belong to a package — the com.burdbrain.drawings
package. I didn’t pull this package name out of the air. The convention
(handed down by the people who created Java) says that you start a package
name by reversing the parts of your domain name, so I reversed burdbrain.
com. Then you add one or more descriptive names, separated by dots. I added
the name drawings because I intend to put all my drawing goodies in
this package.

CHAPTER 14 Sharing Names among the Parts of a Java Program 391

 » The Drawing class is public. A public class is vulnerable to intrusion from the
outside. In general, I avoid plastering the public keyword in front of any old
class. But in Listing 14-2, I have to declare my Drawing class to be public. If I
don’t, classes that aren’t in the com.burdbrain.drawings package can’t use
the goodies in Listing 14-2. In particular, the line

ArtFrame artFrame = new ArtFrame(new Drawing());

in Listing 14-1 is illegal unless the Drawing class is public.

For more information on public and nonpublic classes, see the section “Access
Modifiers for Java Classes,” later in this chapter.

 » The code has a paint method. This paint method uses a standard Java trick
for making things appear onscreen. The parameter g in Listing 14-2 is called a
graphics buffer. To make things appear, all you do is draw on this graphics
buffer, and the buffer is eventually rendered on the computer screen.

Here’s a little more detail: In Listing 14-2, the paint method takes a g param-
eter. This g parameter refers to an instance of the java.awt.Graphics class.
Because a Graphics instance is a buffer, the things that you put onto this
buffer are eventually displayed on the screen. Like all instances of the java.
awt.Graphics class, this buffer has several drawing methods — and one of
them is drawOval. When you call drawOval, you specify a starting position (x
pixels from the left edge of the frame and y pixels from the top of the frame).
You also specify an oval size by putting numbers of pixels in the width and
height parameters. Calling the drawOval method puts a little round thing
into the Graphics buffer. That Graphics buffer, round thing and all, is
displayed onscreen.

Directory structure
The code in Listing 14-2 belongs to the com.burdbrain.drawings package. When
you put a class into a package, you have to create a directory structure that mirrors
the name of the package.

To house code that’s in the com.burdbrain.drawings package, you have to have
three directories: a com directory, a subdirectory of com named burdbrain, and a
subdirectory of burdbrain named drawings. The overall directory structure is
shown in Figure 14-5.

392 PART 4 Smart Java Techniques

If you don’t have your code in the appropriate directories, you get a repulsive and
disgusting NoClassDefFoundError. Believe me, this error is never fun to get.
When you see this error, you don’t have any clues to help you figure out where the
missing class is or where the compiler expects to find it. If you stay calm, you can
figure out all this stuff on your own. If you panic, you’ll be poking around for
hours. As a seasoned Java programmer, I can remember plenty of scraped knuck-
les that came from this heinous NoClassDefFoundError.

Making a frame
This chapter’s first three listings develop one multipart example. This section has
the last of three pieces in that example. This last piece isn’t crucial for the under-
standing of access modifiers, which is the main topic of this chapter. So, if you
want to skip past the explanation of Listing 14-3, you can do so without losing the
chapter’s thread. On the other hand, if you want to know more about the Java
Swing classes, read on.

LISTING 14-3: The ArtFrame Class

package com.burdbrain.frames;

import java.awt.Graphics;

import javax.swing.JFrame;

import com.burdbrain.drawings.Drawing;

FIGURE 14-5:
The files and
directories in
your project.

CHAPTER 14 Sharing Names among the Parts of a Java Program 393

public class ArtFrame extends JFrame {

 private static final long serialVersionUID = 1L;

 Drawing;

 public ArtFrame(Drawing drawing) {

 this.drawing = drawing;

 setTitle("Abstract Art");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

 public void paint(Graphics g) {

 drawing.paint(g);

 }

}

LOOKING FOR FILES IN ALL
THE RIGHT PLACES
You try to compile the program in Listing 14-1. The Java compiler pokes through the
code and stumbles upon some missing pieces. First there’s this thing called an
ArtFrame. Then you have this Drawing business. Listing 14-1 defines a class named
ShowFrame, not ArtFrame or Drawing. So where does the compiler go for information
about the ArtFrame and Drawing classes?

If you stop to think about it, the problem can be daunting. Should the compiler go
searching all over your hard drive for files named ArtFrame.java or Drawing.class?
How large is your new hard drive? 500GB? 750GB? 6,000,000GB? And what about refer-
ences to files on network drives? The search space is potentially unlimited. What if the
compiler eventually resolves all these issues? Then you try to run your code, and the
Java Virtual Machine (JVM) starts searching all over again. (For info on the Java Virtual
Machine, see Chapter 2.)

To tame this problem, Java defines something called a CLASSPATH. The CLASSPATH is a
list of places where the compiler and the JVM look for code. There are several ways to
set a CLASSPATH. Some programmers create a new CLASSPATH each time they run a
Java program. Others create a system-wide CLASSPATH variable. (If you’re familiar with
the PATH variable on Windows and Unix computers, you may already know how this
stuff works.) One way or another, the compiler and the JVM need a list of places to look
for code. Without such a list, these Java tools don’t look anywhere. They don’t find
classes like ArtFrame or Drawing. You get a cannot find symbol message or a
NoClassDefFoundError message, and you’re very unhappy.

394 PART 4 Smart Java Techniques

Listing 14-3 has all the gadgetry that you need for putting a drawing on a Java
frame. The code uses several names from the Java API (Application Programming
Interface). I explain most of these names in Chapters 9 and 10.

The only new name in Listing 14-3 is the word paint. The paint method in
 Listing 14-3 defers to another paint method — the paint method belonging to a
Drawing object. The ArtFrame object creates a floating window on your computer
screen. What’s drawn in that floating window depends on whatever Drawing
object was passed to the ArtFrame constructor.

If you trace the flow of Listings 14-1 through 14-3, you may notice something
peculiar: The paint method in Listing 14-3 never seems to be called. Well, for
many of Java’s window-making components, you just declare a paint method
and let the method sit there quietly in the code. When the program runs, the com-
puter calls the paint method automatically.

That’s what happens with javax.swing.JFrame objects. In Listing 14-3, the
frame’s paint method is called from behind the scenes. Then the frame’s paint
method calls the Drawing object’s paint method, which in turn draws an oval on
the frame. That’s how you get the stuff you see in Figure 14-4.

In your computer’s File Explorer or Finder, navigate to this book’s 14-01 project
folder. In that folder, poke around and find the ShowFrame.java, Drawing.java,
and ArtFrame.java files. Notice how these Java files are nested inside a few dif-
ferent folders.

Sneaking Away from the Original Code
Your preferred software vendor, Burd Brain Consulting, has sold you two files:
Drawing.class and ArtFrame.class. As a customer, you can’t see the code inside
the files Drawing.java and ArtFrame.java. So you have to live with whatever hap-
pens to be inside these two files. (If only you’d purchased a copy of Java For Dum-
mies, 6th Edition, which has the code for these files in Listings 14-2 and 14-3!)
Anyway, you want to tweak the way the oval looks in Figure 14-4 so that it’s a bit
wider. To do this, you create a subclass of the Drawing class — DrawingWide — and
put it in Listing 14-4.

CHAPTER 14 Sharing Names among the Parts of a Java Program 395

LISTING 14-4: A Subclass of the Drawing Class

import java.awt.Graphics;

import com.burdbrain.drawings.Drawing;

public class DrawingWide extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

To make use of the code in Listing 14-4, you remember to change one of the lines
in Listing 14-1. You change the line to

ArtFrame = new ArtFrame(new DrawingWide());

In Listing 14-1 you can also remove the com.burdbrain.drawings.Drawing
import declaration because you no longer need it.

Listing 14-4 defines a subclass of the original Drawing class. In that subclass, you
override the original class’s width and height fields and the original class’s paint
method. The frame that you get is shown in Figure 14-6.

In passing, you may notice that the code in Listing 14-4 doesn’t start with a pack-
age declaration. This means that your whole collection of files comes from the
following three packages:

 » The com.burdbrain.drawings package: The original Drawing class from
Listing 14-2 is in this package.

 » The com.burdbrain.frames package: The ArtFrame class from Listing 14-3
is in this package.

FIGURE 14-6:
Another art

frame.

396 PART 4 Smart Java Techniques

 » An ever-present, unnamed package: In Java, when you don’t start a file with
a package declaration, all the code in that file goes into one big, unnamed
package. Listings 14-1 and 14-4 are in the same unnamed package. In fact,
most of the listings from the first 13 chapters of this book are in Java’s
unnamed package.

At this point, your project has two drawing classes: the original Drawing class and
your new DrawingWide class. Similar as these classes may be, they live in two
separate packages. That’s not surprising. The Drawing class, developed by your
friends at Burd Brain Consulting, lives in a package whose name starts with com.
burdbrain. But you developed DrawingWide on your own, so you shouldn’t put it in
a com.burdbrain package.

The most sensible thing to do is to put it in one of your own packages, such as
com.myhomedomain.drawings; but putting your class in the unnamed package will
do for now.

One way or another, your DrawingWide subclass compiles and runs as planned. You
go home, beaming with the confidence of having written useful, working code.

Default access
If you’re reading these paragraphs in order, you know that the last example ends
happily. The code in Listing 14-4 runs like a charm. Everyone, including my won-
derful editor, Paul Levesque, is happy.

But, wait! Do you ever wonder what life would be like if you hadn’t chosen that
particular career, dated that certain someone, or read that certain For Dummies
book? In this section, I roll back the clock a bit to show you what would have
 happened if one word had been omitted from the code in Listing 14-2.

Dealing with different versions of a program can give you vertigo, so I start this
discussion by describing what you have. First, you have a Drawing class. In this
class, the fields aren’t declared to be public and have the default access. The Drawing
class lives in the com.burdbrain.drawings package. (See Listing 14-5.)

LISTING 14-5: Fields with Default Access

package com.burdbrain.drawings;

import java.awt.Graphics;

CHAPTER 14 Sharing Names among the Parts of a Java Program 397

public class Drawing {

 int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Next, you have a DrawingWide subclass (copied, for your convenience, in
 Listing 14-6). The DrawingWide class is in Java’s unnamed package.

LISTING 14-6: A Failed Attempt to Create a Subclass

import com.burdbrain.drawings.*;

import java.awt.Graphics;

public class DrawingWide extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

The trouble is that the whole thing falls apart at the seams. The code in
Listing 14-6 doesn’t compile. Instead, you get the following error messages:

x is not public in com.burdbrain.drawings.Drawing;

cannot be accessed from outside package

y is not public in com.burdbrain.drawings.Drawing;

cannot be accessed from outside package

The code doesn’t compile, because a field that has default access can’t be directly
referenced outside its package — not even by a subclass of the class containing
the field. The same holds true for any methods that have default access.

A class’s fields and methods are called members of the class. The rules for access —
default and otherwise — apply to all members of classes.

The access rules that I describe in this chapter don’t apply to method-local vari-
ables. A method-local variable can be accessed only within its own method.

398 PART 4 Smart Java Techniques

For the rundown on method-local variables, see Chapter 10.

In Java, the default access for a member of a class is package-wide access. A mem-
ber declared without the word public, private, or protected in front of it is accessible
in the package in which its class resides. Figures 14-7 and 14-8 illustrate the point.

The names of packages, with all their dots and subparts, can be slightly mislead-
ing. For instance, when you write a program that responds to button clicks, you
normally import classes from two separate packages. On one line, you may have
import java.awt.*;. On another line, you may have import java.awt.event.*;.
Importing all classes from the java.awt package doesn’t automatically import
classes from the java.awt.event package.

FIGURE 14-8:
The range of code
in which a default

field or method
can be used

(shaded).

FIGURE 14-7:
Packages cut

across subclass
hierarchies.

CHAPTER 14 Sharing Names among the Parts of a Java Program 399

Crawling back into the package
I love getting things in the mail. At worst, it’s junk mail that I can throw right into
the trash. At best, it’s something I can use, a new toy, or something somebody
sent especially for me.

Well, today is my lucky day. Somebody from Burd Brain Consulting sent a subclass
of the Drawing class. It’s essentially the same as the code in Listing 14-6. The only
difference is that this new DrawingWideBB class lives inside the com.burdbrain.
drawings package. The code is shown in Listing 14-7. To run this code, I have to
modify Listing 14-1 with the line

ArtFrame artFrame = new ArtFrame(new DrawingWideBB());

LISTING 14-7: Yes, Virginia, This Is a Subclass

package com.burdbrain.drawings;

import java.awt.Graphics;

public class DrawingWideBB extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

When you run Listing 14-7 alongside the Drawing class in Listing 14-5, everything
works just fine. The reason? It’s because Drawing and DrawingWideBB are in the
same package. Look back at Figure 14-8 and notice the shaded region that spans
across an entire package. The code in the DrawingWideBB class has every right to
use the x and y fields, which are defined with default access in the Drawing class
because Drawing and DrawingWideBB are in the same package.

To use the DrawingWideBB class in Listing 14-7, you make two changes in the
original Listing 14-1. Change the first import declaration to

import com.burdbrain.drawings.DrawingWideBB;

Also, change the ArtFrame object’s constructor call to new ArtFrame(new
DrawingWideBB()).

400 PART 4 Smart Java Techniques

This section explains default access, the kind of access that I use in most of the
book’s examples. I use default access a lot because, with default access, you don’t
have to make sense of the words public or private. So, in many examples, you
have fewer words to worry about.

But in real life, programmers shun the use of default access. With default access,
all the other classes in your package can view and change the values of your fields.
Other programmers can set daysInThisMonth to 32 or chaptersInThisBook to –7.

By far, the best policy is to use default access only when such access is absolutely
necessary. In most situations, if other classes have to get or set your field’s values,
you should use private access and provide public getter and setter methods.

Protected Access
When I was first getting to know Java, I thought the word protected meant nice and
secure or something like that. “Wow, that field is protected. It must be hard to get
at.” Well, this notion turned out to be wrong. In Java, a member that’s protected
is less hidden, less secure, and available for use in more classes than one that has
default access. In other words, protected access is more permissive than default
access. For me, the terminology is misleading. But that’s the way it is.

Subclasses that aren’t in the same package
Think of protected access this way. You start with a field that has default access
(a field without the word public, private, or protected in its declaration). That
field can be accessed only inside the package in which it lives. Now add the word
protected to the front of the field’s declaration. Suddenly, classes outside that
field’s package have some access to the field. You can now reference the field from
a subclass (of the class in which the field is declared). You can also reference the
field from a sub-subclass, a sub-sub-subclass, and so on. Any descendent class
will do. For an example, see Listings 14-8 and 14-9.

LISTING 14-8: Protected Fields

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 protected int x = 40, y = 40, width = 40, height = 40;

CHAPTER 14 Sharing Names among the Parts of a Java Program 401

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

LISTING 14-9: The Subclass from the Blue Lagoon, Part II

import java.awt.Graphics;

import com.burdbrain.drawings.Drawing;

public class DrawingWide extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14-8 defines the Drawing class. Listing 14-9 defines DrawingWide, which
is a subclass of the Drawing class.

In the Drawing class, the x, y, width, and height fields are protected. The
DrawingWide class has its own width and height fields, but DrawingWide refer-
ences the x and y fields that are defined in the parent Drawing class. That’s okay,
even though DrawingWide isn’t in the same package as its parent Drawing class.
(The Drawing class is in the com.burdbrain.drawings package; the DrawingWide
class is in Java’s great, unnamed package.) It’s okay because the x and y fields are
protected in the Drawing class.

Compare Figures 14-8 and 14-9. Notice the extra bit of shading in Figure 14-9.
A subclass can access a protected member of a class, even if that subclass belongs
to some other package.

Do you work with a team of programmers? Do people from outside your team use
their own team’s package names? If so, when they use your code, they may make
subclasses of the classes that you’ve defined. This is where protected access comes
in handy. Use protected access when you want people from outside your team to
make direct references to your code’s fields or methods.

402 PART 4 Smart Java Techniques

For the members of a class, private access is the most restrictive, then comes
default access, then protected access, and finally, public access.

Classes that aren’t subclasses
(but are in the same package)
Those people from Burd Brain Consulting are sending you one piece of software
after another. This time, they’ve sent an alternative to the ShowFrame class — the
class in Listing 14-1. This new ShowFrameWideBB class displays a wider oval (how
exciting!), but it does this without creating a subclass of the old Drawing class.
Instead, the new ShowFrameWideBB code creates a Drawing instance and then
changes the value of the instance’s width and height fields. The code is shown in
Listing 14-10.

LISTING 14-10: Drawing a Wider Oval

package com.burdbrain.drawings;

import com.burdbrain.frames.ArtFrame;

class ShowFrameWideBB {

 public static void main(String args[]) {

 Drawing drawing = new Drawing();

 drawing.width = 100;

 drawing.height = 30;

FIGURE 14-9:
The range of code

in which a
protected field or

method can be
used (shaded).

CHAPTER 14 Sharing Names among the Parts of a Java Program 403

 ArtFrame artFrame = new ArtFrame(drawing);

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

Here’s the story. This ShowFrameWideBB class in Listing 14-10 is in the same
package as the Drawing class (the com.burdbrain.drawings package). But
ShowFrameWideBB isn’t a subclass of the Drawing class.

Now imagine compiling ShowFrameWideBB with the Drawing class that’s shown in
Listing 14-8 — the class with all those protected fields. What happens? Well,
everything goes smoothly because a protected member is available in two (some-
what unrelated) places. Look again at Figure 14-9. A protected member is avail-
able to subclasses outside the package, but the member is also available to code
(subclasses or not) within the member’s package.

Listing 14-10 has a main method, which is inside a class, which is in turn inside
the com.burdbrain.drawings package. With most Integrated Development Envi-
ronments (IDEs), you don’t think twice about running a main method that’s in a
named package. But if you run programs from the command line, you may need
to type a fully qualified class name. For example, to run the code in Listing 14-10,
you type java com.burdbrain.drawings.ShowFrameWideBB.

The real story about protected access is one step more complicated than the story
that I describe in this section. The Java Language Specification (https://docs.
oracle.com/javase/specs) mentions a hair-splitting point about code being
responsible for an object’s implementation. When you’re first figuring out how to
program in Java, don’t worry about this point. Wait until you’ve written many Java
programs. Then when you stumble upon a variable has protected access
error message, you can start worrying. Better yet, skip the worrying and take a
careful look at the protected access section in the Java Language Specification.

For info about the Java Language Specification, visit Chapter 3.

Here are some things for you to try:

 » In Listing 14-2, I draw a circle on a frame. To fill the circle with green color, use
the Graphics class’s setColor and fillOval methods, like this:

g.setColor(Color.GREEN)

g.fillOval(x, y, width, height);

https://docs.oracle.com/javase/specs/)
https://docs.oracle.com/javase/specs/)
https://docs.oracle.com/javase/specs

404 PART 4 Smart Java Techniques

Values such as Color.GREEN belong to Color class in the java.awt package.

Create a frame that displays a traffic signal with its green, yellow, and red
lights.

 » A Book has a title (a String) and an author (an instance of the Author class).
An Author has a name (a String) and an ArrayList of Book instances. A
separate class contains a main method that creates several books and several
authors. The main method also displays information about the books and
authors.

Put each class in its own package. Wherever possible, make your fields
private, and provide public getters and setters.

 » An Item has a name (a String) and an artist (an instance of the Artist class).
Each Artist instance has a name (a String) and an ArrayList of items.

The Song and Album classes are subclasses of the Item class. Each Song
instance has a genre (a value from an enum named Genre). The values of
Genre are ROCK, POP, BLUES, and CLASSICAL. Each Album instance has an
ArrayList of songs.

Finally, a Playlist has an ArrayList of items.

Create these classes. In a separate class, construct instances of each class, and
display information about these instances on the screen.

 » The following four classes live in four different .java files. Without typing
these classes in an IDE’s editor, decide which statements will cause the IDE to
display error messages. For each such statement, decide on the least permis-
sive access change that would eliminate the error message:

// THIS CODE DOES NOT COMPILE:

package com.allmycode.things;

import com.allyourcode.stuff.Stuff;

import com.allyourcode.stuff.morestuff.MoreStuff;

public class Things {

 protected int i = 0;

 private int j = 0;

 int k = 0;

 public static void main(String[] args) {

 Stuff stuff = new Stuff();

 System.out.println(stuff.i);

CHAPTER 14 Sharing Names among the Parts of a Java Program 405

  MoreStuff moreStuff = new MoreStuff();

 System.out.println(moreStuff.i);

 }

}

package com.allyourcode.stuff;

import com.allyourcode.stuff.morestuff.MoreStuff;

public class Stuff {

 protected int i = 0;

 void aMethod() {

 new MoreStuff().myMethod();

 }

}

package com.allyourcode.stuff.morestuff;

import com.allmycode.things.Things;

public class MoreStuff extends Things {

 protected void myMethod() {

 System.out.println(i);

 }

}

package com.allmycode.things;

public class MoreThings extends Things {

 public void anotherMethod() {

 System.out.println(i);

 System.out.println(j);

 System.out.println(k);

 }

}

406 PART 4 Smart Java Techniques

Access Modifiers for Java Classes
Maybe the things that you read about access modifiers for members make you a
tad dizzy. After all, member access in Java is a complicated subject with lots of plot
twists and cliffhangers. Well, the dizziness is over. Compared with the saga for
fields and methods, the access story for classes is rather simple.

A class can be either public or nonpublic. If you see something like

public class Drawing

you’re looking at the declaration of a public class. But, if you see plain old

class ShowFrame

the class that’s being declared isn’t public.

Public classes
If a class is public, you can refer to the class from anywhere in your code. Of
course, some restrictions apply. You must obey all the rules in this chapter’s
“Directory structure” section. You must also refer to a packaged class properly.
For example, in Listing 14-1, you can write

import com.burdbrain.drawings.Drawing;

import com.burdbrain.frames.ArtFrame;

...

ArtFrame artFrame = new ArtFrame(new Drawing());

or you can do without the import declarations and write

com.burdbrain.frames.ArtFrame artFrame =

 new com.burdbrain.frames.ArtFrame(new com.burdbrain.drawings.Drawing());

One way or another, your code must acknowledge that the ArtFrame and Drawing
classes are in named packages.

Nonpublic classes
If a class isn’t public, you can refer to the class only from code within the class’s
package.

CHAPTER 14 Sharing Names among the Parts of a Java Program 407

I tried it. First, I went back to Listing 14-2 and deleted the word public. I turned
public class Drawing into plain old class Drawing, like this:

package com.burdbrain.drawings;

import java.awt.Graphics;

class Drawing {

 public int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Then I compiled the code in Listing 14-7. Everything was peachy because List-
ing 14-7 contains the following lines:

package com.burdbrain.drawings;

public class DrawingWideBB extends Drawing

Because both pieces of code are in the same com.burdbrain.drawings package,
access from DrawingWideBB back to the nonpublic Drawing class was no problem
at all.

But then I tried to compile the code in Listing 14-3. The code in Listing 14-3
begins with

package com.burdbrain.frames;

That code isn’t in the com.burdbrain.drawings package. So when the computer
reached the line

Drawing drawing;

from Listing 14-3, the computer went poof! To be more precise, the computer dis-
played this message:

com.burdbrain.drawings.Drawing is not public in com.burdbrain.drawings;

cannot be accessed from outside package

Well, I guess I got what was coming to me.

408 PART 4 Smart Java Techniques

Things are never as simple as they seem. The rules that I describe in this section
apply to almost every class in this book. But Java has fancy things called inner
classes, and inner classes follow a different set of rules. Fortunately, a typical nov-
ice programmer has little contact with inner classes. The only inner classes in this
book are in Chapter 15 (and a few inner classes disguised as enum types). So for
now, you can live quite happily with the rules that I describe in this section.

CHAPTER 15 Fancy Reference Types 409

IN THIS CHAPTER

 » Writing and using a Java interface

 » Working with abstract classes

Fancy Reference Types

In previous chapters, you may have read about the things that full-time and
part-time employees have in common. In particular, both the FullTimeEmployee
and PartTimeEmployee classes can extend the Employee class. That’s nice to

know if you’re running a small business, but what if you’re not running a busi-
ness? What if you’re taking care of house pets?

This chapter explores the care of house pets and other burning issues.

Java’s Types
Chapter 4 explains that Java has these two kinds of types:

 » Java has eight primitive types.

The four that you use most often are int, double, boolean, and char.

 » Java’s API has thousands of reference types. And, when you write a Java
program, you define new reference types.

Java’s String type is a reference type. So are Java’s Scanner, JFrame,
ArrayList, and File types. My DummiesFrame is a reference type. In
Chapter 7, you create your own Employee, FullTimeEmployee, and
PartTimeEmployee reference types. Your first You’ll love Java! program has a
main method inside of a class, and that class is a reference type. You may not
realize it, but every array belongs to a reference type.

Chapter 15

410 PART 4 Smart Java Techniques

In Java, reference types are everywhere. But until this point in the book, the only
reference types that you see are classes and arrays. Java has other kinds of refer-
ence types, and this chapter explores the possibilities.

The Java Interface
Think about a class (such as an Employee class) and a subclass (such as a Full
TimeEmployee class). The relationship between a class and its subclass is one of
inheritance. In many real-life families, a child inherits assets from a parent. And
in Chapter 8, the FullTimeEmployee class inherits name and jobTitle fields from
the Employee class. That’s the way it works.

But consider the relationship between an editor and an author. The editor says, "By
signing this contract, you agree to submit a completed manuscript by the ninth of
January." Despite any excuses that the author gives before the deadline date (and,
believe me, authors make plenty of excuses), the relationship between the editor
and the author is one of obligation. The author agrees to take on certain responsi-
bilities; and, in order to continue being an author, the author must fulfill those
responsibilities. (By the way, there’s no subtext in this paragraph — none at all.)

Now consider Barry Burd. Who? Barry Burd — that guy who writes Java For
 Dummies and certain other For Dummies books (all from Wiley Publishing). He’s a
college professor, and he’s also an author. You want to mirror this situation in a
Java program, but Java doesn’t support multiple inheritance. You can’t make
Barry extend both a Professor class and an Author class at the same time.

Fortunately for Barry, Java has interfaces. An interface is a kind of reference type.
In fact, the code to create an interface looks a lot like the code to create a class:

public interface MyInterfaceName {

 // blah, blah, blah

}

An interface is a lot like a class, but an interface is different. (So, what else is new?
A cow is like a planet, but it’s quite a bit different. Cows moo; planets hang in space.)

Anyway, when you read the word interface, you can start by thinking of a class.
Then, in your head, note that

 » A class can extend only one parent class, but a class can implement many
interfaces.

CHAPTER 15 Fancy Reference Types 411

 » A parent class is a bunch of stuff that a class inherits. But an interface is a
bunch of stuff that an implementing class is obliged to provide.

What about poor Barry? He can be an instance of a Person class with all the fields
that any person has — name, address, age, height, weight, and so on. He can also
implement more than one interface:

 » Because Barry implements a Professor interface, he must have methods
named teachStudents, adviseStudents, and gradePapers.

 » Because he implements an Author interface, he must have methods named
writeChapters, reviewChapters, answerEmail, and so on.

Two interfaces
Imagine two different kinds of data. One is a column of numbers that comes from
an array. Another is a table (with rows and columns) that comes from a disk file.
What might these two things have in common?

I don’t know about you, but I may want to display both kinds of data. So I can write
code to create a contract. The contract says, "Whoever signs this contract agrees
to have a display method." In Listing 15-1, I declare a Displayable interface.

LISTING 15-1: Behold! An Interface!

public interface Displayable {

 public void display();

}

Wait just a darn minute! The display method declaration in Listing 15-1 has a
header but no body. There are no curly braces after display() — only a lonely-
looking semicolon. What’s going on here?

To answer the question, I’ll let the code in Listing 15-1 speak for itself. If the code
in the listing could talk, here’s what the code would say:

“As an interface, my display method has a header but no body. A class that
claims to implement me (the Displayable interface) must provide (either directly
or indirectly) a body for the display method. That is, a class that claims to

412 PART 4 Smart Java Techniques

implement Displayable must, in one way or another, provide its own code of the
following kind:

public void display() {

 // Some statements go here

}

In order to implement me (the interface in Listing 15-1), the new code’s display
method must take no parameters and return nothing (also known as void).”

The Displayable interface is like a legal contract. The Displayable interface
doesn’t tell you what an implementing class already has. Instead, the Display
able interface tells you what an implementing class must declare in its own code.

In addition to displaying columns of numbers and tables, I may also want to sum-
marize both kinds of data. How do you summarize a column of numbers? I don’t
know. Maybe you display the total of all the numbers. And how do you summarize a
table? Maybe you display the table’s column headings. How you summarize the data
isn’t my concern. All I care about is that you have some way to summarize the data.

So I create code containing a second Java contract. The second contract says,
"Whoever signs this contract agrees to have a summarize method." In Listing 15-2,
I declare a Summarizable interface.

LISTING 15-2: Another Interface

public interface Summarizable {

 public String summarize();

}

Any class claiming to implement the Summarizable interface must, by hook or by
crook, provide an implementation of a summarize method — a method with no
parameters that returns a String value.

In the declaration of an interface, a particular method might have no body of its
own. A method with no body is called an abstract method.

Implementing interfaces
Listing 15-3 implements the Displayable and Summarizable interfaces, and pro-
vides bodies for the display and summarize methods.

CHAPTER 15 Fancy Reference Types 413

LISTING 15-3: Implementing Two Interfaces

public class ColumnOfNumbers implements Displayable, Summarizable {

 double numbers[];

 public ColumnOfNumbers(double[] numbers) {

 this.numbers = numbers;

 }

 @Override

 public void display() {

 for (double d : numbers) {

 System.out.println(d);

 }

 }

 @Override

 public String summarize() {

 double total = 0.0;

 for (double d : numbers) {

 total += d;

 }

 return Double.toString(total);

 }

}

When you implement an interface, you provide bodies for the interface’s abstract
methods.

Java’s compiler is serious about the use of the implements keyword. If you remove
either of the two method declarations from Listing 15-3 without removing the
implements clause, you see some frightening error messages in your IDE’s editor.
Java expects you to honor the contract that the implements keyboard implies. If
you don’t honor the contract, Java refuses to compile your code. So there!

You can use Java’s error messages to your advantage. Start by typing some code
containing the clause implements Displayable, Summarizable. Because of the
implements clause, the editor displays an error mark and lists the names of the
methods that you should have declared but didn’t. In this section’s example, those
method names are display and summarize. After a few more mouse clicks, the
IDE generates simple display and summarize methods for you.

Listing 15-4 contains another class that implements the Displayable and
 Summarizable interfaces.

414 PART 4 Smart Java Techniques

LISTING 15-4: Another Class Implements the Interfaces

import java.io.File;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.Scanner;

public class Table implements Displayable, Summarizable {

 Scanner diskFile;

 ArrayList<String> lines = new ArrayList<>();

 public Table(String fileName) {

 try {

 diskFile = new Scanner(new File(fileName));

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 while (diskFile.hasNextLine()) {

 lines.add(diskFile.nextLine());

 }

 }

 @Override

 public void display() {

 for (String line : lines) {

 System.out.println(line);

 }

 }

 @Override

 public String summarize() {

 return lines.get(0);

 }

}

In Listings 15-3 and 15-4, notice several uses of the @Override annotation.
 Chapter 8 introduces the use of the @Override annotation. Normally, you use
@Override to signal the replacement of a method that’s already been declared in
a superclass. But from Java 6 onward, you can also use @Override to signal an
interface method’s implementation. That’s what I do in Listings 15-3 and 15-4.

CHAPTER 15 Fancy Reference Types 415

Putting the pieces together
The code in Listing 15-5 makes use of all the stuff in Listings 15-1 to 15-4.

LISTING 15-5: Getting the Most out of Your Interfaces

public class Main {

 public static void main(String[] args) {

 double numbers[] = { 21.7, 68.3, 5.5 };

 ColumnOfNumbers column = new ColumnOfNumbers(numbers);

 displayMe(column);

 summarizeMe(column);

 Table table = new Table("MyTable.txt");

 displayMe(table);

 summarizeMe(table);

 }

 static void displayMe(Displayable displayable) {

 displayable.display();

 System.out.println();

 }

 static void summarizeMe(Summarizable summarizable) {

 System.out.println(summarizable.summarize());

 System.out.println();

 }

}

With the MyTable.txt file shown in Figure 15-1, the output from Listing 15-5 is
shown in Figure 15-2.

FIGURE 15-1:
The MyTable.txt

file.

416 PART 4 Smart Java Techniques

Feast your eyes on the displayMe method in Listing 15-5. What kind of parameter
does the displayMe method take? Is it a ColumnOfNumbers? No. Is it a Table? No.

The displayMe method doesn’t know anything about ColumnOfNumbers instances
or Table instances. All the displayMe method knows about is things that imple-
ment Displayable. That’s what the displayMe method’s parameter list says.
When you hand something that implements the Displayable interface to the
displayMe method, the displayMe method knows what it can do. The displayMe
method can call the parameter’s display method, because that parameter object
is guaranteed to have a display method.

The same kind of thing is true about the summarizeMe method in Listing 15-5.
How do you know that you can call summarizable.summarize() inside the body of
the summarizeMe method? You can make this call because summarizable has to
have a summarize() method. The rules about Java interfaces guarantee it.

That’s the real power behind Java’s interfaces.

In this section, the ColumnOfNumbers and Table classes implement the Display
able and Summarizable interfaces. What about a Deletable interface? Any class
implementing the Deletable interface must have its own delete method.

Create the DeletableColumnOfNumbers class — a subclass of the ColumnOf
Numbers class. In addition to all the things ColumnOfNumbers does, the Deletable
ColumnOfNumbers class also implements the Deletable interface. When you
delete a column of numbers, you set the values of each of its entries to 0.0.

Create the DeletableTable class — a subclass of the Table class. In addition to all
the things Table does, the DeletableTable class also implements the Deletable
interface. When you delete a table, you remove all rows except the first (table head-
ing) row. (Hint: If you call the lines list’s remove method starting from the 1 row
and going to the lines.size() row, you won’t be happy with the results. A call to
the remove method modifies the list immediately, and that can mess up your loop.)

FIGURE 15-2:
Running the code

in Listing 15-5.

CHAPTER 15 Fancy Reference Types 417

Abstract Classes
Is there anything you can say that applies to animals of every kind? If you’re a
biologist, maybe there is. But if you’re a programmer, you can say very little. If
you don’t believe me, consider the wondrous variety of life on the planet Earth:*

 » A gelada monkey spends the day on a grassy plateau. But at night the gelada
goes for a snooze on the rocky, perilous edge of a mountain cliff. With any
luck, the sleeping monkey doesn’t toss and turn much.

TWO KINDS OF METHODS
Inside an interface declaration, any method without a body is called an abstract
method. If you run Java 8 or later, you can also put methods with bodies inside an inter-
face declaration. A method with a body is called a default method. In an interface’s code,
each default method declaration starts with the default keyword.

public interface MyInterface {

 void method1();

 default void method2() {

 System.out.println("Hello!");

 }

}

In MyInterface, method1 is an abstract method, and method2 is a default method. If
you create a class that implements MyInterface, like so

class MyClass implements MyInterface

then your newly declared MyClass must declare its own method1 and provide a body
for method1. Optionally, your MyClass may declare its own method2. If MyClass
doesn’t declare its own method2, then MyClass inherits a method2 body from
MyInterface.

*See smithsonianmag.com/science-nature/ethiopias-exotic-monkeys-
147893502, http://news.nationalgeographic.com/news/2004/12/1208_
041208_pompeii_worms.html, psychologytoday.com/blog/choke/201207/
how-humans-learn-lessons-the-sea-squirt, and esa.int/Our_Activities/
Human_Spaceflight/Research/Tiny_animals_survive_exposure_to_space.

http://www.smithsonianmag.com/science-nature/ethiopias-exotic-monkeys-147893502/
http://www.smithsonianmag.com/science-nature/ethiopias-exotic-monkeys-147893502/
http://news.nationalgeographic.com/news/2004/12/1208_041208_pompeii_worms.html
http://news.nationalgeographic.com/news/2004/12/1208_041208_pompeii_worms.html
https://www.psychologytoday.com/blog/choke/201207/how-humans-learn-lessons-the-sea-squirt
https://www.psychologytoday.com/blog/choke/201207/how-humans-learn-lessons-the-sea-squirt
http://www.esa.int/Our_Activities/Human_Spaceflight/Research/Tiny_animals_survive_exposure_to_space
http://www.esa.int/Our_Activities/Human_Spaceflight/Research/Tiny_animals_survive_exposure_to_space

418 PART 4 Smart Java Techniques

 » A Pompeii worm lives in an underwater tube. The temperature by the worm’s
head is about 72 degrees Fahrenheit (22 degrees Celsius). But at the other
end of the worm, the water temperature is normally 176 degrees Fahrenheit
(80 degrees Celsius). If you know one of these worms personally, don’t buy
any warm socks for it.

 » A sea squirt lives part of its life as an animal. At a certain point in its life cycle,
the sea squirt attaches itself permanently to a rock and then digests its own
brain, effectively turning itself into a plant.

 » A tiny water bear can survive 12 days (and maybe more) with no atmosphere
in the vacuum of outer space. Even the cosmic radiation in outer space doesn’t
harm a water bear. That’s what I want to be in my next life — a water bear.

With so much biological diversity on our planet, the only thing I can say that
applies to every animal is that every animal has a certain weight (measured in
pounds or kilograms) and every animal makes (or, possibly, doesn’t make) a
characteristic sound. Listing 15-6 has the complete scoop.

LISTING 15-6: What a Programmer Knows about Animals

public class Animal {

 double weight;

 String sound;

 public Animal(double weight, String sound) {

 this.weight = weight;

 this.sound = sound;

 }

}

While I typed the code for the Animal class, I had to stop and correct several typing
mistakes. The mistakes weren’t really my fault. My cat was walking back and
forth across my computer keyboard. And that brings me from the subject of all
animals to the topic of house pets.

A house pet is an animal. But every house pet has a name — like Fluffy, Blacky, or
Princess. And every house pet has a recommended routine for taking care of the pet.

Of course, the care routines differ greatly from one kind of pet to another. If I had
a dog, I’d have to walk the dog. But I’d never try to walk a cat. In fact, I don’t even
let our cat out of the house. So when I define my HousePet class, I want to be
vague about pet care instructions. And in Java, a class that’s somewhat vague is
called an abstract class. Listing 15-7 has an example.

CHAPTER 15 Fancy Reference Types 419

LISTING 15-7: What It Means to Be a House Pet

public abstract class HousePet extends Animal {

 String name;

 public HousePet(String name, double weight, String sound) {

 super(weight, sound);

 this.name = name;

 }

 abstract public void howToCareFor();

 public void about() {

 System.out.print(name + " weighs " + weight + " pounds");
 System.out.print(sound != null ? (" and says '" + sound + "'") : "");
 System.out.println(".");

 }

}

On the first line of Listing 15-7, the keyword abstract tells Java that HousePet is
an abstract class. Because HousePet is an abstract class, HousePet can have an
abstract method. And in Listing 15-7, howToCareFor is an abstract method. An
abstract method has a header but no body. In an abstract method’s declaration,
there are no curly braces — only a semicolon where curly braces would normally
appear.

So, when you try to execute the howToCareFor method, what happens? Well, you
can’t really execute the howToCareFor method in Listing 15-7. In fact, you can’t
even create an instance of the abstract class declared in Listing 15-7. The follow-
ing code is illegal:

// VERY BAD CODE:

HousePet myPet = new HousePet("Boop", 12.0, "Meow");

An abstract class has no life of its own. In order to use an abstract class, you have
to create an ordinary (non-abstract) class that extends the abstract class. In the
ordinary class, all methods have bodies. So everything works out.

Before you walk away from Listing 15-7, notice the super(weight, sound) call in
that listing. As in Chapter 9, the keyword super triggers a call to the superclass’s
constructor. In Listing 15-7, calling super(weight, sound) is like calling the
Animal(double weight, String sound) constructor from Listing 15-6. The con-
structor assigns values to the new object’s weight and sound fields.

420 PART 4 Smart Java Techniques

Caring for your pet
Here’s a quotation from the book Java For Dummies, 7th Edition:

"In order to use an abstract class, you have to create an ordinary (non-abstract)
class that extends the abstract class."

So, to use the HousePet class in Listing 15-7, you have to create a class that
extends the HousePet class. The code in Listing 15-8 extends the abstract HousePet
class and provides a body for the method named howToCareFor.

LISTING 15-8: It’s a Dog’s Life

public class Dog extends HousePet {

 int walksPerDay;

 public Dog(String name, double weight, int walksPerDay) {

 super(name, weight, "Woof");

 this.walksPerDay = walksPerDay;

 }

 @Override

 public void howToCareFor() {

 System.out.print("Walk " + name);
 System.out.println(" " + walksPerDay + " times each day.");
 }

}

In addition to having a name, a weight, and a sound, every dog gets walked a cer-
tain number of times per day. And now, because of the howToCareFor method’s
body, you know what caring for a dog means: It means walking the dog a certain
number of times each day. It’s a good thing that the howToCareFor method is
abstract in the HousePet class. You wouldn’t necessarily want to walk some other
kind of pet.

Take, for example, a domestic cat. "Caring" for a cat may mean not bothering it too
often. And cats have other characteristics — characteristics that don’t apply to
dogs. For example, some cats go outdoors; others don’t. You can make walks
PerDay be 0 for an indoor cat, but that feels like cheating. Instead, each cat can
have a boolean value representing the cat’s outdoor indoor/outdoor status. List-
ing 15-9 has the code.

CHAPTER 15 Fancy Reference Types 421

LISTING 15-9: How to Be a Cat

public class Cat extends HousePet {

 boolean isOutdoor;

 public Cat(String name, double weight, boolean isOutdoor) {

 super(name, weight, "Meow");

 this.isOutdoor = isOutdoor;

 }

 @Override

 public void howToCareFor() {

 System.out.println(

 isOutdoor ? "Let " : "Do not let " + name + " outdoors.");
 }

}

Both the Dog and Cat classes are subclasses of the HousePet class. And, because of
the abstract method declaration in Listing 15-7, both the Dog and Cat classes must
have howToCareFor methods. But the howToCareFor methods in the two classes
are quite different. One method refers to a walksPerDay field; the other method
refers to an isOutdoor field. And because the HousePet class’s howToCareFor
method is abstract, there’s no default behavior. Either the Dog and Cat classes
implement their own howToCareFor methods or the Dog and Cat classes can’t
claim to extend HousePet.

This paragraph describes a picky detail, and you should ignore it if you have any
inclination to do so: The Dog and Cat classes must implement the howToCareFor
method because the Dog and Cat classes aren’t abstract. If the Dog and Cat classes
were abstract (that is, if they were abstract classes extending the abstract HousePet
class), then the Dog and Cat classes would not have to implement the howToCare
For method. The Dog and Cat classes could pass the implementation buck to their
own subclasses. For that matter, an abstract class that implements an interface
doesn’t have to provide bodies for all the interfaces abstract methods. Abstract
classes can take advantage of many little loopholes. But in order to use these loop-
holes, you have to create some exotic programming examples. So, in this chapter
I simplify the story and write that (a) a class that extends an abstract class must
provide bodies for the abstract class’s abstract methods, and (b) a class that
implements an interface must provide bodies for the interface’s abstract methods.
It’s not exactly true, but it’s good enough for now.

If you live in a very small apartment, you may not have room for a dog or a cat. In
that case, Listing 15-10 is for you.

422 PART 4 Smart Java Techniques

LISTING 15-10: You May Grow Up to Be a Fish

public class Fish extends HousePet {

 public Fish(String name, double weight) {

 super(name, weight, null);

 }

 @Override

 public void howToCareFor() {

 System.out.println("Feed " + name + " daily.");

 }

}

I could go on and on creating subclasses of the HousePet class. Many years ago,
our daughter had some pet mice. Caring for the mice meant keeping the cat away
from them.

In Java, subclasses multiply like rabbits.

Using all your classes
Your work isn’t finished until you’ve tested your code. Most programs require
hours, days, and even months of testing. But for this chapter’s HousePet example,
I’ll do only one test. The test is in Listing 15-11.

LISTING 15-11: The Class Menagerie

public class Main {

 public static void main(String[] args) {

 Dog dog1 = new Dog("Fido", 54.7, 3);

 Dog dog2 = new Dog("Rover", 15.2, 2);

 Cat cat1 = new Cat("Felix", 10.0, false);

 Fish fish1 = new Fish("Bubbles", 0.1);

 dog1.howToCareFor();

 dog2.howToCareFor();

 cat1.howToCareFor();

 fish1.howToCareFor();

 dog1.about();

 dog2.about();

CHAPTER 15 Fancy Reference Types 423

 cat1.about();

 fish1.about();

 }

}

When you run the code in Listing 15-11, you get the output shown in Figure 15-3.

Notice how the code in Listing 15-11 seamlessly and effortlessly calls many ver-
sions of the howToCareFor method. With the dog1.howToCareFor() and dog2.
howToCareFor() calls, Java executes the method in Listing 15-8. With the cat1.
howToCareFor() call, Java executes the method in Listing 15-9. And, with the
fish1.howToCareFor() call, Java executes the method in Listing 15-10 — it’s like
having a big if statement without writing the if statement’s code. When you add
a new class for a pet mouse, you don’t have to enlarge an existing if statement.
There’s no if statement to enlarge.

Notice also how the about method in the abstract HousePet class keeps track of
the object that called it. For example, when you call dog1.about() in Listing 15-11,
the HousePet class’s nonspecific about method knows that the sound dog1 makes
is Woof. Everything falls into place very nicely.

Do you like abstract art? You can use abstract classes to create abstract art!

 » Create an abstract class named Shape. The Shape class has a size field (of type
int) and an abstract show method. Extend the abstract Shape class with two
other classes: a Square class and a Triangle class. In the bodies of the Square
and Triangle classes’ show methods, place the code that creates a text-based
rendering of the shape in question. For example, a Square of size 5 looks like this:

| |

| |

| |

FIGURE 15-3:
Please don’t pet

the Pompeii
worm.

424 PART 4 Smart Java Techniques

A Triangle of size 2 looks like this:

 /\

 / \

 » For an extra-special challenge, create an abstract Shape class with an abstract
paint method. The Shape class also has size, color, and isFilled fields.
The size field has type int, the color field has type java.awt.Color, and
the isFilled field has type boolean. Extend the abstract Shape class with
two other classes: a Square class and a Circle class. In the bodies of the
Square and Circle classes’ paint methods, place the code that draws the
shape in question on a Java JFrame.

Relax! You’re Not Seeing Double!
If you’ve read this chapter’s earlier sections on interfaces and abstract methods,
your head might be spinning. Both interfaces and abstract classes have abstract
methods. But the abstract methods play slightly different roles in these two kinds
of reference types. How can you keep it all straight in your mind?

The first thing to do is to remember that no one learns about object-oriented pro-
gramming concepts without getting lots of practice in writing code. If you’ve read
this chapter and you’re confused, that may be a good thing. It means you’ve
understood enough to know how complicated this stuff is. The more code you
write, the more comfortable you’ll become with classes, interfaces, and all these
other ideas.

The next thing to do is to sort out the differences in the way you declare abstract
methods. Table 15-1 has the story.

Both interfaces and abstract classes have abstract methods. So you may be won-
dering how you should choose between declaring an interface and declaring an
abstract class. In fact, you might ask three professional programmers how inter-
faces and abstract classes differ from one another. If you do, you may get five
different answers. (Yes, five answers; not three answers.)

Interfaces and abstract classes are similar beasts, and the new features in Java 8
made them even more similar than in previous Java versions. But the basic idea is
about the relationships among things.

CHAPTER 15 Fancy Reference Types 425

 » Extending a subclass represents an is a relationship.

Think about the relationships in this chapter’s earlier section "Abstract
Classes." A house pet is an animal. A dog is a house pet. A cat is a house pet.
A fish is a house pet.

 » Implementing an interface represents a can do relationship.

Think about the relationships in this chapter’s earlier section "The Java
Interface." The first line in Listing 15-3 says implements Displayable. With
these words, the code promises that each ColumnOfNumbers object can be
displayed. Later in same listing, you make good on the promise by declaring a
display method.

Think about the relationships in this chapter’s earlier section "The Java
Interface." A column of numbers isn’t always a summarizable thing. But in
Listing 15-3, you promise that the ColumnOfNumbers objects will be summari-
zable, and you make good on the promise by declaring a summarize method.

If you want more tangible evidence of the difference between an interface and an
abstract class, consider this: A class can implement many interfaces, but a class
can extend only one other class, even if that one class is an abstract class. So, after
you’ve declared

public class Dog extends HousePet

you can’t also make Dog extend a Friend class. But you can make Dog implement
a Befriendable interface. And then you can make the same Dog class implement
a Trainable interface. (By the way, I’ve tried making my Cat class implement a
Trainable interface but, for some reason, it never works.)

TABLE 15-1:	 Using (or Not Using) Abstract Methods
In an Ordinary
(Non-Abstract) Class

In an
Interface

In an
Abstract Class

Are abstract methods allowed? No Yes Yes

Can a method declaration contain
the abstract keyword?

No Yes Yes

Can a method declaration contain
the default keyword (meaning "not
abstract")?

No Yes No

With neither the abstract nor the
default keyword, a method is:

Not abstract Abstract Not abstract

426 PART 4 Smart Java Techniques

And, if you want an even more tangible difference between an interface and an
abstract class, I have one for you: An interface can’t contain any non-static, non-
final fields. For example, if the HousePet class in Listing 15-7 were an interface, it
couldn’t have a name field. That simply wouldn’t be allowed.

So there. Interfaces and abstract classes are different from one another. But if
you’re new at the game, you shouldn’t worry about the difference. Just read as
much code as you can, and don’t get scared when you see an abstract method.
That’s all there is to it.

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 427

IN THIS CHAPTER

 » Creating code to handle mouse clicks

 » Responding when the user presses a
key or selects a drop down box item

 » Putting classes inside of other classes

Responding to
Keystrokes and
Mouse Clicks

In the late 1980s, I bought my first mouse. I paid $100 and, because I didn’t
really need a mouse, I checked with my wife before buying it. (At the time, my
computer ran a hybrid text/windowed environment. Anything that I could do

with a mouse, I could just as easily do with the Alt key.)

Now it’s the 21st century. The last ten mice that I got were free. Ordinary ones just
fall into my lap somehow. A few exotic mice were on sale at the local computer
superstore. One cost $10 and came with a $10 rebate.

As I write this chapter, I’m using the most recent addition to my collection: an
official For Dummies mouse. This yellow-and-white beauty has a little compart-
ment filled with water. Instead of a snowy Atlantic City scene, the water sur-
rounds a tiny Dummies Man charm. It’s so cute. It was a present from the folks at
Wiley Publishing.

Chapter 16

428 PART 4 Smart Java Techniques

Go On . . . Click That Button
In previous chapters, I create windows that don’t do much. A typical window dis-
plays some information but doesn’t have any interactive elements. Well, the time
has come to change all that. This chapter’s first example is a window with a but-
ton on it. When the user clicks the button, darn it, something happens. The code
is shown in Listing 16-1, and the main method that calls the code in Listing 16-1
is in Listing 16-2.

LISTING 16-1: A Guessing Game

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.Random;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

class GameFrame extends JFrame implements ActionListener {

 private static final long serialVersionUID = 1L;

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);

 JButton button = new JButton("Guess");

 JLabel label = new JLabel(numGuesses + " guesses");

 public GameFrame() {

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLayout(new FlowLayout());

 add(textField);

 add(button);

 add(label);

 button.addActionListener(this);

 pack();

 setVisible(true);

 }

 @Override

 public void actionPerformed(ActionEvent e) {

 String textFieldText = textField.getText();

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 429

 if (Integer.parseInt(textFieldText)==randomNumber) {

 button.setEnabled(false);

 textField.setText(textField.getText() + " Yes!");
 textField.setEnabled(false);

 } else {

 textField.setText("");

 textField.requestFocus();

 }

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " guess" : " guesses";

 label.setText(numGuesses + guessWord);
 }

}

LISTING 16-2: Starting the Guessing Game

public class ShowGameFrame {

 public static void main(String args[]) {

 new GameFrame();

 }

}

Some snapshots from a run of this section’s code are shown in Figures 16-1
and 16-2. In a window, the user plays a guessing game. Behind the scenes, the
program chooses a secret number (a number from 1 to 10). Then the program dis-
plays a text field and a button. The user types a number in the text field and clicks
the button. One of two things happens next:

 » If the number that the user types isn’t the same as the secret number,
the computer posts the number of guesses made so far. The user gets to
make another guess.

 » If the number that the user types is the same as the secret number, the
text field displays Yes!. Meanwhile, the game is over, so both the text field
and the button become disabled. Both components have that gray, washed-
out look, and neither component responds to keystrokes or mouse clicks.

FIGURE 16-1:
An incorrect

guess.

430 PART 4 Smart Java Techniques

In Listing 16-1, the code to create the frame, the button, and the text field isn’t
earth-shattering. I did similar things in Chapters 9 and 10. The JTextField class
is new in this chapter, but a text field isn’t much different from a button or a label.
Like so many other components, the JTextField class is defined in the javax.
swing package. When you create a new JTextField instance, you can specify a
number of columns. In Listing 16-1, I create a text field that’s five columns wide.

Listing 16-1 uses a fancy operator to decide between the singular guess and the
plural guesses. If you’re not familiar with this use of the question mark and colon,
see Chapter 11.

Events and event handling
The big news in Listing 16-1, shown in the preceding section, is the handling of
the user’s button click. When you’re working in a graphical user interface (GUI),
anything the user does (like pressing a key, moving the mouse, clicking the mouse,
or whatever) is called an event. The code that responds to the user’s press, move-
ment, or click is called event-handling code.

Listing 16-1 deals with the button-click event with three parts of its code:

 » The top of the GameFrame class declaration says that this class implements
ActionListener.

By announcing that it will implement the ActionListener interface, the
code in Listing 16-1 agrees that it will give meaning to the interface’s abstract
actionPerformed method. In this situation, giving meaning means declaring
an actionPerformed method with curly braces, a body, and maybe some
statements to execute.

 » Sure enough, the code for the GameFrame class has an actionPerformed
method, and that actionPerformed method has a body.

 » Finally, the constructor for the GameFrame class adds this to the button’s list
of action listeners.

Java will call this code’s actionPerformed method when the user clicks the
button. Hooray!

Taken together, all three of these tricks make the GameFrame class handle button
clicks.

FIGURE 16-2:
The correct

guess.

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 431

For the full story about Java interfaces, refer to Chapter 15.

You can learn a lot about the code in Listing 16-1 by removing certain statements
and observing the results. For each suggested removal, see whether your IDE
 displays any error messages. If not, try to run the program. After observing the
results, put the element back and try the next suggested removal:

 » Remove the entire actionPerformed method declaration — header and all.

 » Remove the call to setVisible(true).

 » Remove the call to pack().

 » Remove the call to button.addActionListener().

Threads of execution
Here’s a well-kept secret: Java programs are multithreaded, which means that
 several things are going on at once whenever you run a Java program. Sure, the
computer is executing the code that you’ve written, but it’s executing other code
as well (code that you didn’t write and don’t see). All this code is being executed
at the same time. While the computer executes your main method’s statements,
one after another, the computer takes time out, sneaks away briefly, and executes
statements from other, unseen methods. For most simple Java programs, these
other methods are ones that are defined as part of the Java Virtual Machine (JVM).

For instance, Java has an event-handling thread. While your code runs, the event-
handling thread’s code runs in the background. The event-handling thread’s code
listens for mouse clicks and takes appropriate action whenever a user clicks the
mouse. Figure 16-3 illustrates how this works.

FIGURE 16-3:
Two Java threads.

432 PART 4 Smart Java Techniques

When the user clicks the button, the event-handling thread says, “Okay, the but-
ton was clicked. What should I do about that?” And the answer is, “Call some
actionPerformed methods.” It’s as if the event-handling thread has code that
looks like this:

if (buttonJustGotClicked()) {

 object1.actionPerformed(infoAboutTheClick);

 object2.actionPerformed(infoAboutTheClick);

 object3.actionPerformed(infoAboutTheClick);

}

Of course, behind every answer is yet another question. In this situation, the
 follow-up question is, “Where does the event-handling thread find action
Performed methods to call?” And there’s another question: “What if you don’t
want the event-handling thread to call certain actionPerformed methods that are
lurking in your code?”

Well, that’s why you call the addActionListener method. In Listing 16-1, the call

button.addActionListener(this);

tells the event-handling thread, “Put this code’s actionPerformed method on
your list of methods to be called. Call this code’s actionPerformed method when-
ever the button is clicked.”

So that’s how it works. To have the computer call an actionPerformed method,
you register the method with Java’s event-handling thread. You do this registra-
tion by calling addActionListener. The addActionListener method belongs to
the object whose clicks (and other events) you’re waiting for. In Listing 16-1,
you’re waiting for the button object to be clicked, and the addActionListener
method belongs to that button object.

The keyword this
In Chapters 9 and 10, the keyword this gives you access to instance variables from
the code inside a method. What does the this keyword really mean? Well, com-
pare it with the English phrase state your name:

I, (state your name), do solemnly swear, to uphold the constitution of the Philadelphia
Central High School Photography Society

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 433

The phrase state your name is a placeholder. It’s a space in which each person puts
his or her own name:

I, Bob, do solemnly swear . . .

I, Fred, do solemnly swear . . .

Think of the pledge (“I . . . do solemnly swear . . .”) as a piece of code in a Java
class. In that piece of code is the placeholder phrase state your name. Whenever an
instance of the class (a person) executes the code (that is, takes the pledge), the
instance fills in its own name in place of the phrase state your name.

The this keyword works the same way. It sits inside the code that defines the
GameFrame class. Whenever an instance of GameFrame is constructed, the instance
calls addActionListener(this). In that call, the this keyword stands for
the instance itself.

button.addActionListener(thisGameFrameInstance);

By calling button.addActionListener(this), the GameFrame instance is saying,
“Add my actionPerformed method to the list of methods that are called whenever
the button is clicked.” And indeed, the GameFrame instance has an action
Performed method. The GameFrame has to have an actionPerformed method
because the GameFrame class implements the ActionListener interface. It’s funny
how that all fits together.

In your own words, describe the uses of the keyword this in the following code:

public class Main {

 public static void main(String[] args) {

 new IntegerHolder(42).displayMyN();

 new IntegerHolder(7).displayMyN();

 }

}

class IntegerHolder {

 private int n;

 IntegerHolder(int n) {

 this.n = n;

 }

 void displayMyN() {

 Displayer.display(this);

 }

434 PART 4 Smart Java Techniques

 public int getN() {

 return n;

 }

}

class Displayer {

 public static void display(IntegerHolder holder) {

 System.out.println(holder.getN());

 }

}

Inside the actionPerformed method
The actionPerformed method in Listing 16-1 uses a bunch of tricks from the Java
API. Here’s a brief list of those tricks:

 » Every instance of JTextField (and of JLabel) has its own getter and setter
methods, including getText and setText. Calling getText fetches what-
ever string of characters is in the component. Calling setText changes the
characters that are in the component. In Listing 16-1, judicious use of getText
and setText pulls a number out of the text field and replaces the number
with either nothing (the empty string "") or the number, followed by the
word Yes!

 » Every component in the javax.swing package (JTextField, JButton, or
whatever) has a setEnabled method. When you call setEnabled(false),
the component gets that limp, gray, washed-out look and can no longer
receive button clicks or keystrokes.

 » Every component in the javax.swing package has a requestFocus method.
When you call requestFocus, the component gets the privilege of receiving
the user’s next input. For example, in Listing 16-1, the call textField.
requestFocus() says, “Even though the user may have just clicked the
button, put a cursor in the text field. That way, the user can type another
guess in the text field without clicking the text field first.”

You can perform a test to make sure that the object referred to by the button
 variable is really the thing that was clicked. Just write if (e.getSource() ==
button). If your code has two buttons, button1 and button2, you can test to find
out which button was clicked. You can write if (e.getSource() == button1)
and if (e.getSource() == button2).

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 435

The serialVersionUID
Chapter 9 introduces the SuppressWarnings annotation to avoid dealing with
something called a serialVersionUID. A serialVersionUID is a number that
helps Java avoid version conflicts when you send an object from one place to
another. For example, you can send the state of your JFrame object to another
computer’s screen. Then the other computer can check the frame’s version num-
ber to make sure that no funny business is taking place.

In Chapter 9, I side-step the serialVersionUID issue by telling Java to ignore any
warnings about missing serial version numbers. But in Listing 16-1, I take a bolder
approach. I give my JFrame object a real serialVersionUID. This is my first ver-
sion of GameFrame, so I give this GameFrame the version number 1. (Actually, I give
this GameFrame the number 1L, meaning the long value 1. See Chapter 4.)

So, when would you bother to change a class’s serialVersionUID number? If ver-
sion number 1 is nice, is version number 2 even better? The answer is complicated,
but the bottom line is, don’t change the serialVersionUID number unless you
make incompatible changes to the class’s code. By “incompatible changes,”
I mean changes that make it impossible for the receiving computer’s existing code
to handle your newly created objects.

For more details about the serialVersionUID and what constitutes an incompat-
ible code change, check out this site:

http://docs.oracle.com/javase/8/docs/platform/serialization/spec/version.
html

Every major Java IDE has visual tools to help you design a GUI interface.

 » Eclipse has WindowBuilder: www.eclipse.org/windowbuilder

 » IntelliJ IDEA has GUI Designer: www.jetbrains.com/help/idea/2016.3/
gui-designer-basics.html

 » NetBeans has GUI Builder: http://netbeans.org/kb/docs/java/
quickstart-gui.html

With any of these tools, you drag components from a palette onto a frame. (The
components include buttons, text fields, and other goodies.) Using the mouse, you
can move and resize each component. As you design the frame visually, the tools
creates the frame’s code automatically. Each component on the frame has a little
spreadsheet showing the component’s properties. For example, you can change
the text on a button’s face by changing the text entry in the button’s spreadsheet.
When you right-click or control-click the picture of a component, you get
the option of jumping to the component’s actionPerformed method. In the

http://docs.oracle.com/javase/8/docs/platform/serialization/spec/version.html
http://docs.oracle.com/javase/8/docs/platform/serialization/spec/version.html
http://www.eclipse.org/windowbuilder
http://www.jetbrains.com/help/idea/2016.3/gui-designer-basics.html
http://www.jetbrains.com/help/idea/2016.3/gui-designer-basics.html
http://netbeans.org/kb/docs/java/quickstart-gui.html
http://netbeans.org/kb/docs/java/quickstart-gui.html

436 PART 4 Smart Java Techniques

actionPerformed method, you add Java code, such as button.setText("You
clicked me!"). Tools like WindowBuilder, GUI Designer, and GUI Builder make
the design of GUI interfaces quicker, more natural, and more intuitive.

This chapter describes features of Java’s Swing framework. Since 1998, Swing has
been Java’s primary framework for developing GUI applications. But late in 2011,
Oracle added a newer framework — JavaFX — to Java’s core. JavaFX provides a
richer set of components than Swing. But for simple applications, JavaFX is more
difficult to use. If you’re interested in reading more about JavaFX, visit Oracle’s
Getting Started with JavaFX page. It’s at http://docs.oracle.com/javafx/2/
get_started/jfxpub-get_started.htm.

Using the techniques shown in this chapter, create a program that displays a frame
containing three components: a text field (JTextField), a button (JButton), and
a label (JLabel). The user types text into the text field. Then, when the user clicks
the button, the program copies any text that’s in the text field onto the label.

Responding to Things Other
Than Button Clicks

When you know how to respond to one kind of event, responding to other kinds of
events is easy. Listings 16-3 and 16-4 display a window that converts between US
and UK currencies. The code in these listings responds to many kinds of events.
Figures 16-4, 16-5, and 16-6 show some pictures of the code in action.

LISTING 16-3: Displaying the Local Currency

import java.awt.Color;

import java.awt.FlowLayout;

import java.awt.event.ItemEvent;

import java.awt.event.ItemListener;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.text.NumberFormat;

import java.util.Locale;

import javax.swing.JComboBox;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

http://docs.oracle.com/javafx/2/get_started/jfxpub-get_started.htm
http://docs.oracle.com/javafx/2/get_started/jfxpub-get_started.htm

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 437

class MoneyFrame extends JFrame implements

 KeyListener, ItemListener, MouseListener {

 private static final long serialVersionUID = 1L;

 JLabel fromCurrencyLabel = new JLabel(" ");

 JTextField textField = new JTextField(5);

 JLabel label = new JLabel(" ");

 JComboBox<String> combo = new JComboBox<>();

 NumberFormat currencyUS = NumberFormat.getCurrencyInstance();

 NumberFormat currencyUK = NumberFormat.getCurrencyInstance(Locale.UK);

 public MoneyFrame() {

 setLayout(new FlowLayout());

 add(fromCurrencyLabel);

 add(textField);

 combo.addItem("US to UK");

 combo.addItem("UK to US");

 add(label);

 add(combo);

 textField.addKeyListener(this);

 combo.addItemListener(this);

 label.addMouseListener(this);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setSize(300, 100);

 setVisible(true);

 }

 void setTextOnLabel() {

 String amountString = "";

 String fromCurrency = "";

 try {

 double amount = Double.parseDouble(textField.getText());

 if(combo.getSelectedItem().equals("US to UK")) {

 amountString = " = " + currencyUK.format(amount * 0.61214);
 fromCurrency = "$";

 }

 if(combo.getSelectedItem().equals("UK to US")) {

 amountString = " = " + currencyUS.format(amount * 1.63361);
 fromCurrency = "\u00A3";

 }

(continued)

438 PART 4 Smart Java Techniques

 } catch (NumberFormatException e) {

 }

 label.setText(amountString);

 fromCurrencyLabel.setText(fromCurrency);

 }

 @Override

 public void keyReleased(KeyEvent k) {

 setTextOnLabel();

 }

 @Override

 public void keyPressed(KeyEvent k) {

 }

 @Override

 public void keyTyped(KeyEvent k) {

 }

 @Override

 public void itemStateChanged(ItemEvent i) {

 setTextOnLabel();

 }

 @Override

 public void mouseEntered(MouseEvent m) {

 label.setForeground(Color.red);

 }

 @Override

 public void mouseExited(MouseEvent m) {

 label.setForeground(Color.black);

 }

 @Override

 public void mouseClicked(MouseEvent m) {

 }

 @Override

 public void mousePressed(MouseEvent m) {

 }

 @Override

 public void mouseReleased(MouseEvent m) {

 }

}

LISTING 16-3: (continued)

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 439

LISTING 16-4: Calling the Code in Listing 16-3

public class ShowMoneyFrame {

 public static void main(String args[]) {

 new MoneyFrame();

 }

}

Okay, so Listing 16-3 is a little long. Even so, the outline of the code in Listing 16-3
isn’t too bad. Here’s what the outline looks like:

class MoneyFrame extends JFrame implements

 KeyListener, ItemListener, MouseListener {

 Variable declarations

 Constructor for the MoneyFrame class

 Declaration of a method named setTextOnLabel

 Methods that are required because the class implements three interfaces

}

The constructor in Listing 16-3 adds the following four components to the new
MoneyFrame window:

 » A label: In Figure 16-4, the label displays a dollar sign.

 » A text field: In Figure 16-4, the user types 54 in the text field.

FIGURE 16-4:
US-to-UK
currency.

FIGURE 16-5:
Using the

combo box.

FIGURE 16-6:
UK-to-US
currency.

440 PART 4 Smart Java Techniques

 » Another label: In Figure 16-4, the label displays £33.06.

 » A combo box: In Figure 16-4, the combo box displays US to UK. In Figure 16-5,
the user selects an item in the box. In Figure 16-6, the selected item is UK
to US.

In Java, a JComboBox (commonly called a drop-down list) can display items of any
kind. In Listing 16-3, the declaration

JComboBox<String> combo = new JComboBox<>();

constructs a JComboBox whose entries have type String. That seems sensible,
but if your application has a Person class, you can declare JComboBox<Person>
peopleBox. In that situation, Java has to know how to display each Person object
in the drop-down list. (It isn’t a big deal. Java finds out how to display a person by
looking for a toString() method inside the Person class.)

The MoneyFrame implements three interfaces: the KeyListener, ItemListener,
and MouseListener interfaces. Because it implements three interfaces, the code
can listen for three kinds of events. I discuss the interfaces and events in the
 following list:

 » KeyListener: A class that implements the KeyListener interface must have
three methods named keyReleased, keyPressed, and keyTyped. When you
lift your finger off a key, the event-handling thread calls keyReleased.

In Listing 16-3, the keyReleased method calls setTextOnLabel. My set
TextOnLabel method checks to see what’s currently selected in the combo box.
If the user selects the US-to-UK option, the setTextOnLabel method converts
dollars to pounds. If the user selects the UK-to-US option, the setTextOnLabel
method converts pounds to dollars.

In the setTextOnLabel method, I use the string "\u00A3". The funny-looking
\u00A3 code is Java’s UK pound sign. (The u in \u00A3 stands for Unicode —
an international standard for representing characters in the world’s alpha-
bets.) If my operating system’s settings defaulted to UK currency, in the runs of
Java programs the pound sign would appear on its own. For information about
all of this, check out the Locale class in ’s API documentation (https://docs.
oracle.com/javase/8/docs/api/java/util/Locale.html).

By the way, if you’re thinking in terms of real currency conversion, forget
about it. This program uses rates that may or may not have been accurate
at one time. Sure, a program can reach out on the Internet for the most
up-to-date currency rates, but at the moment, you have other Javafish to fry.

https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 441

 » ItemListener: A class that implements the ItemListener interface must
have an itemStateChanged method. When you select an item in a combo
box, the event-handling thread calls itemStateChanged.

In Listing 16-3, when the user selects US-to-UK or UK-to-US in the combo box,
the event-handling thread calls the itemStateChanged method. In turn, the
itemStateChanged method calls setTextOnLabel, and so on.

 » MouseListener: A class that implements the MouseListener interface must
have mouseEntered, mouseExited, mouseClicked, mousePressed, and
mouseReleased methods. Implementing MouseListener is different from
implementing ActionListener. When you implement ActionListener, as
in Listing 16-1, the event-handling thread responds only to mouse clicks. But
with MouseListener, the thread responds to the user pressing the mouse,
releasing the mouse, and more.

In Listing 16-3, the mouseEntered and mouseExited methods are called
whenever you move over or away from the label. How do you know that the
label is involved? Just look at the code in the MoneyFrame constructor. The
label variable’s addMouseListener method is the one that’s called.

Look at the mouseEntered and mouseExited methods in Listing 16-3. When
mouseEntered or mouseExited is called, the computer forges ahead and
calls setForeground. This setForeground method changes the color of the
label’s text.

Isn’t modern life wonderful? The Java API even has a Color class with names
like Color.red and Color.black.

Listing 16-3 has several methods that aren’t really used. For instance, when you
implement MouseListener, your code has to have its own mouseReleased method.
You need the mouseReleased method not because you’re going to do anything
special when the user releases the mouse button, but because you made a promise
to the Java compiler and have to keep that promise.

In a previous section, you create a program that copies text from a text field to a
label whenever the user clicks a button. Modify the program so that the user
doesn’t have to click a button. The program automatically updates the label’s text
whenever the user modifies the text field’s content.

Creating Inner Classes
Here’s big news! You can define a class inside of another class! For the user,
 Listing 16-5 behaves the same way as Listing 16-1. But in Listing 16-5, the
GameFrame class contains a class named MyActionListener.

442 PART 4 Smart Java Techniques

LISTING 16-5: A Class within a Class

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.Random;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

class GameFrame extends JFrame {

 private static final long serialVersionUID = 1L;

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);

 JButton button = new JButton("Guess");

 JLabel label = new JLabel(numGuesses + " guesses");

 public GameFrame() {

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLayout(new FlowLayout());

 add(textField);

 add(button);

 add(label);

 button.addActionListener(new MyActionListener());

 pack();

 setVisible(true);

 }

 class MyActionListener implements ActionListener {

 @Override

 public void actionPerformed(ActionEvent e) {

 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {

 button.setEnabled(false);

 textField.setText(textField.getText() + " Yes!");
 textField.setEnabled(false);

 } else {

 textField.setText("");

 textField.requestFocus();

 }

CHAPTER 16 Responding to Keystrokes and Mouse Clicks 443

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " guess" : " guesses";

 label.setText(numGuesses + guessWord);
 }

 }

}

The MyActionListener class in Listing 16-5 is an inner class. An inner class is a lot
like any other class. But within an inner class’s code, you can refer to the enclos-
ing class’s fields. For example, several statements inside MyActionListener use
the name textField, and textField is defined in the enclosing GameFrame class.

Notice that the code in Listing 16-5 uses the MyActionListener class only once.
(The only use is in a call to button.addActionListener.) So I ask, do you really
need a name for something that’s used only once? No, you don’t. You can substi-
tute the entire definition of the inner class inside the call to button.addAction
Listener. When you do this, you have an anonymous inner class. Listing 16-6
shows you how it works.

LISTING 16-6: A Class with No Name (Inside a Class with a Name)

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.Random;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

class GameFrame extends JFrame {

 private static final long serialVersionUID = 1L;

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);

 JButton button = new JButton("Guess");

 JLabel label = new JLabel(numGuesses + " guesses");

 public GameFrame() {

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLayout(new FlowLayout());

(continued)

444 PART 4 Smart Java Techniques

 add(textField);

 add(button);

 add(label);

 button.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {

 button.setEnabled(false);

 textField.setText(textField.getText() + " Yes!");
 textField.setEnabled(false);

 } else {

 textField.setText("");

 textField.requestFocus();

 }

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " guess" : " guesses";

 label.setText(numGuesses + guessWord);
 }

 });

 pack();

 setVisible(true);

 }

}

Inner classes are good for things like event handlers, such as the action
Performed method in this chapter’s examples. The most difficult thing about an
anonymous inner class is keeping track of the parentheses, the curly braces, and
the indentation. My humble advice is, start by writing code without any inner
classes, as in the code from Listing 16-1. Later, when you become bored with ordi-
nary Java classes, experiment by changing some of your ordinary classes into
inner classes.

In a previous section, you create a program that copies text from a text field to a
label whenever the user clicks a button. Modify the code so that it has an inner
class. Then if you’re really ambitious, modify the code so that it has an anony-
mous inner class.

LISTING 16-6: (continued)

CHAPTER 17 Using Java Database Connectivity 445

IN THIS CHAPTER

 » Connecting to a database

 » Inserting values into a database

 » Making queries to a database

Using Java Database
Connectivity

Whenever I teach Java to professional programmers, I always hear the
same old thing: “We don’t need to make attractive-looking layouts. No
glitzy GUIs for us. We need to access databases. Yup, just [shut up and]

show us how to write Java programs that talk to databases.”

So here it is, folks — the real deal!

The Java Database Connectivity* (JDBC) classes provide common access to most
database management systems. Just get a driver for your favorite vendor’s sys-
tem, customize one line of code in each of this chapter’s examples, and you’re
ready to go.

Chapter 17

*Apparently, there’s no evidence in any of Oracle’s literature that the acronym
JDBC actually stands for Java Database Connectivity. But that’s okay. If Java Database
Connectivity isn’t the correct terminology, it’s close enough. In the Java world,
JDBC certainly doesn’t stand for John Digests Bleu Cheese.

446 PART 4 Smart Java Techniques

Creating a Database and a Table
The crux of JDBC is contained in two packages: java.sql and javax.sql, which
are both in the Java API. This chapter’s examples use the classes in java.sql. The
first example is shown in Listing 17-1.

LISTING 17-1: Creating a Database and a Table

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class CreateTable {

 public static void main(String args[]) {

 final String CONNECTION = "jdbc:derby:AccountDatabase;create=true";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("create table ACCOUNTS " +
 " (NAME VARCHAR(32) NOT NULL PRIMARY KEY, " +
 " ADDRESS VARCHAR(32), " +
 " BALANCE FLOAT)");

 System.out.println("ACCOUNTS table created.");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Running the examples in this chapter is a bit trickier than running other chapters’
examples. To talk to a database, you need an intermediary piece of software known
as a database driver. Database drivers come in all shapes and sizes, and many of
them are quite expensive. But Listing 17-1 points to a small, freebie driver: the
Derby JDBC driver. The code for the Derby JDBC driver is kept in the Embedded
Driver class (which is a Java class). This class lives inside the org.apache.derby.
jdbc package.

When you install Java 9, you don’t get this org.apache.derby.jdbc package. You
need a separate file named derby.jar, which you can download from http://
db.apache.org/derby/derby_downloads.html.

http://db.apache.org/derby/derby_downloads.html
http://db.apache.org/derby/derby_downloads.html

CHAPTER 17 Using Java Database Connectivity 447

Even after you’ve downloaded a copy of derby.jar, your IDE might not know
where you’ve put the file on your computer’s hard drive. It’s usually not enough
to put derby.jar in a well-known directory. Instead, you have to tell Eclipse,
IntelliJ IDEA, or NetBeans exactly where to find your derby.jar file. Here’s what
you do:

 » Eclipse: Select Project ➪  Properties. In the resulting dialog box, select Java
Build Path, and then select the Libraries tab. Click the Add External JARs
button, and then navigate to the derby.jar file on your computer’s
hard drive.

 » IntelliJ IDEA: Select File ➪  Project Structure. In the resulting dialog box, select
Libraries. Click the plus sign (+) icon and, in the resulting drop-down box,
select Java. Navigate to the derby.jar file on your computer’s hard drive.

 » NetBeans: Select File ➪  Project Properties. In the resulting dialog box, select
Libraries and then select the Run tab. Click the Add JAR/Folder button, and
navigate to the derby.jar file on your computer’s hard drive.

What happens when you run the code
During a successful run of the code in Listing 17-1, you see an ACCOUNTS table
created message. That’s about it. The code has no other visible output because
most of the output goes to a database.

If you poke around a bit, you can find direct evidence of the new database’s exis-
tence. Using your computer’s File Explorer or Finder, you can navigate to the
project folder containing the code in Listing 17-1. (If you’ve downloaded the code
from this book’s website, look in your IDE’s 17-01 project folder.) Inside that
folder, you’ll see a brand-new AccountDatabase subfolder. That’s where the newly
created database lives.

Unfortunately, you can’t see what’s inside the database unless you run a couple
more programs. Read on!

Using SQL commands
In Listing 17-1, the heart of the code lies in the call to executeUpdate. The
executeUpdate call contains a string — a normal, Java, double-quoted string of
characters. To keep the code readable, I’ve chopped the string into four parts, and
separate the parts with plus signs (Java’s string concatenation operator).

448 PART 4 Smart Java Techniques

If you’re familiar with Structured Query Language, or SQL, the command strings
in the calls to executeUpdate make sense to you. If not, pick up a copy of SQL For
Dummies, 8th Edition, by Allen G. Taylor (Wiley). One way or another, don’t go
fishing around this chapter for an explanation of the create table command.
You won’t find an explanation, because the big create table string in Listing 17-1
isn’t part of Java. This command is just a string of characters that you feed to
Java’s executeUpdate method. This string, which is written in SQL, creates a new
database table with three columns (columns for a customer’s NAME, the custom-
er’s ADDRESS, and the account’s BALANCE). When you write a Java database pro-
gram, that’s what you do. You write ordinary SQL commands and surround those
commands with calls to Java methods.

WHOSE DATABASE IS IT ANYWAY?
Databases come in many shapes and sizes from many different vendors. In 2017, the
top database vendors include Oracle, Microsoft, IBM, and SAP. Some popular open-
source databases include PostgreSQL and Oracle’s MySQL. The code in Listing 17-1 (and
this chapter’s other listings) uses an open-source database from The Apache Software
Foundation known as Apache Derby.

If you don’t want to use Apache Derby, you have to replace the CONNECTION string in
this chapter’s examples. What other string you use depends on the kind of database
software you have, and on other factors. Check your database vendor’s documentation.

By the way, database drivers are like people: some are quite old and others aren’t so
old. As of January 2017, the latest version of JDBC is version 4.2. A "quite old" JDBC
database driver is one that was created for a version of JDBC before Version 4.0 (circa
December 2006). If your database driver doesn’t meet the JDBC 4.0 standards, you have
to add a few extra statements to each of this chapter’s examples, as follows:

final public String DRIVER = "com.databasevendorname.databasebrandname.maybe

otherstuff";

try {

 Class.forName(DRIVER).newInstance();

} catch (InstantiationException |

 IllegalAccessException |

 ClassNotFoundException e) {

 e.printStackTrace();

}

Again, check your database vendor’s documentation.

CHAPTER 17 Using Java Database Connectivity 449

Connecting and disconnecting
Aside from the call to the executeUpdate method, the code in Listing 17-1 is
copy-and-paste stuff. Here’s a rundown on what each part of the code means:

 » DriverManager.getConnection: Establish a session with a particular
database.

The getConnection method lives in a Java class named DriverManager. In
Listing 17-1, the call to getConnection creates an AccountDatabase and
opens a connection to that database. Of course, you may already have an
AccountDatabase before you start running the code in Listing 17-1. If you do,
the text ;create=true in the CONNECTION string has no effect.

In the CONNECTION string, notice the colons. The code doesn’t simply name
the AccountDatabase — it tells the DriverManager class what protocols to
use to connect with the database. The code jdbc:derby: — which is a lot
like the http: in a web address — tells the computer to use the jdbc protocol
to talk to the derby protocol, which in turn talks directly to your Account
Database.

 » conn.createStatement: Make a statement.

It seems strange, but in Java Database Connectivity, you create a single
statement object. After you’ve created a statement object, you can use that
object many times, with many different SQL strings, to issue many different
commands to the database. So, before you start calling the statement.
executeUpdate method, you have to create an actual statement object. The
call to conn.createStatement creates that statement object for you.

 » try-with-resources: Release resources, come what may!

As Ritter always says, you’re not being considerate of others if you don’t clean
up your own messes. Every connection and every database statement lock up
some system resources. When you’re finished using these resources, you
release them.

In Listing 17-1, Java’s try-with-resources block automatically closes and
releases your resources at the end of the block’s execution. In addition,
try-with-resources takes care of all the messy details associated with failed
attempts to catch exceptions gracefully.

For the scoop about try-with-resources, see Chapter 13.

450 PART 4 Smart Java Techniques

Putting Data in the Table
Like any other tabular configuration, a database table has columns and rows.
When you run the code in Listing 17-1, you get an empty table. The table has three
columns (NAME, ADDRESS, and BALANCE) but no rows. To add rows to the table, run
the code in Listing 17-2.

LISTING 17-2: Inserting Data

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class AddData {

 public static void main(String args[]) {

 final String CONNECTION = "jdbc:derby:AccountDatabase";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("insert into ACCOUNTS values " +
 " ('Barry Burd', '222 Cyber Lane', 24.02) ");

 statement.executeUpdate("insert into ACCOUNTS values " +
 " ('Joe Dow', '111 Luddite Street', 55.63)");

 System.out.println("Rows added.");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 17-2 uses the same strategy as the code in Listing 17-1: Create Java strings
containing SQL commands, and make those strings be arguments to Java’s
executeUpdate method. In Listing 17-2, I put two rows in the ACCOUNTS table —
one for me and another for Joe Dow. (Joe, I hope you appreciate this.)

CHAPTER 17 Using Java Database Connectivity 451

For the best results, put all this chapter’s listings in the same project. That
way, you don’t have to add the derby.jar file to more than one project. You can
also count on the AccountDatabase folder being readily available to all four of
this chapter’s code listings. If you download this book’s examples for Eclipse,
IntelliJ IDEA, or NetBeans, you’ll find all the code from this chapter in the project
named 17-01.

Retrieving Data
What good is a database if you can’t get data from it? In this section, you query the
database that you created in the previous sections. The code to issue the query is
shown in Listing 17-3.

LISTING 17-3: Making a Query

import static java.lang.System.out;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.text.NumberFormat;

public class GetData {

 public static void main(String args[]) {

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 final String CONNECTION = "jdbc:derby:AccountDatabase";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement();

 ResultSet resultset = statement.executeQuery("select * from ACCOUNTS"))

 {

 while (resultset.next()) {

 out.print(resultset.getString("NAME"));

 out.print(", ");

 out.print(resultset.getString("ADDRESS"));

 out.print(" ");

 out.println(currency.format(resultset.getFloat("BALANCE")));

 }

(continued)

452 PART 4 Smart Java Techniques

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

To use a database other than Apache Derby, change the value of CONNECTION in
each of this chapter’s examples.

A run of the code from Listing 17-3 is shown in Figure 17-1. The code queries the
database and then steps through the rows of the database, printing the data from
each of the rows.

Listing 17-3 calls executeQuery and supplies the call with an SQL command. For
those who know SQL commands, this particular command gets all data from the
ACCOUNTS table (the table that you create in Listing 17-1).

The thing returned from calling executeQuery is of type java.sql.ResultSet.
(That’s one of the differences between the executeUpdate and executeQuery
methods: executeQuery returns a result set, and executeUpdate doesn’t.) A result
set is much like a database table. Like the original table, the result set has rows and
columns. Each row contains the data for one account. In this example, each row
has a name, an address, and a balance amount.

After you call executeQuery and get your result set, you can step through the
result set one row at a time. To do this, you go into a little loop and test the condi-
tion resultset.next() at the top of each loop iteration. Each time around, the
call to resultset.next() does two things:

 » It moves you to the next row of the result set (the next account) if another
row exists.

 » It tells you whether another row exists by returning a boolean value — true
or false.

If the condition resultset.next() is true, the result set has another row. The
computer moves to that other row, so you can march into the body of the loop and
scoop data from that row. On the other hand, if resultset.next() is false, the

LISTING 17-3: (continued)

FIGURE 17-1:
Getting data from

the database.

CHAPTER 17 Using Java Database Connectivity 453

result set doesn’t have any more rows. You jump out of the loop and start closing
everything.

Now, imagine that the computer is pointing to a row of the result set, and you’re
inside the loop in Listing 17-3. Then you’re retrieving data from the result set’s
row by calling the result set’s getString and getFloat methods. Back in
 Listing 17-1, you set up the ACCOUNTS table with the columns NAME, ADDRESS, and
BALANCE. Here in Listing 17-3, you’re getting data from these columns by calling
your getSomeTypeOrOther methods and feeding the original column names to
these methods. After you have the data, you display the data on the computer
screen.

Each Java ResultSet instance has several nice getSomeTypeOrOther methods.
Depending on the type of data you put into a column, you can call methods get
Array, getBigDecimal, getBlob, getInt, getObject, getTimestamp, and several
others.

Destroying Data
It’s true. All good things must come to an end. By writing this, I’m referring both
to this book’s content and to the information in this chapter’s AccountDatabase.

To get rid of the database table that you create in Listing 17-1, run the code in
Listing 17-4.

LISTING 17-4: Arrivederci, Database Table

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class DropTable {

 public static void main(String[] args) {

 final String CONNECTION = "jdbc:derby:AccountDatabase";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("drop table ACCOUNTS");

(continued)

454 PART 4 Smart Java Techniques

 System.out.println("ACCOUNTS table dropped.");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

When you run this code, you wipe the slate clean. Your AccountDatabase no lon-
ger contains an ACCOUNTS table. So, if you want to run Listing 17-1 again (perhaps
with a change or two), you can.

Who knows? You may even create a table to store your favorite Java For Dummies
jokes.

Naturally, I have some things for you to try:

 » Rerun the code in Listing 17-3. This time, use the following string in the
executeQuery call:

"select * from ACCOUNTS where BALANCE > 30"

 » Run the AddData program (from Listing 17-2) two times in a row without
modifying any of the program’s code. What error messages do you see? Why?

 » Create a table containing three columns: an item name, a price, and a tax rate.
Store data in several rows of the table.

Retrieve the data from the table and display a row of output for each row in
the table. Each row of output contains the item name followed by the price
with tax added. For example, if an item’s price is $10 and the item’s tax rate is
0.05 (meaning 5 percent), the item’s output row contains the number $10.50.

On the last line of the program’s output, display the total of all items’ tax-
added prices.

LISTING 17-4: (continued)

5The Part of Tens

IN THIS PART . . .

Catch common mistakes before you make them.

Explore the best resources for Java on the web.

CHAPTER 18 Ten Ways to Avoid Mistakes 457

IN THIS CHAPTER

 » Checking your capitalization and
value comparisons

 » Watching out for fall-through

 » Putting methods, listeners, and
constructors where they belong

 » Using static and non-static references

 » Avoiding other heinous errors

Ten Ways to Avoid
Mistakes

“The only people who never make mistakes are the people who never do
 anything at all.” One of my college professors said that. I don’t remember
the professor’s name, so I can’t give him proper credit. I guess that’s

my mistake.

Putting Capital Letters Where They Belong
Java is a case-sensitive language, so you really have to mind your p’s and q’s —
along with every other letter of the alphabet. Here are some details to keep in
mind as you create Java programs:

 » Java’s keywords are all completely lowercase. For instance, in a Java if
statement, the word if can’t be If or IF.

 » When you use names from the Java API (Application Programming Interface),
the case of the names has to match what appears in the API.

Chapter 18

458 PART 5 The Part of Tens

 » You also need to make sure that the names you make up yourself are
capitalized the same way throughout your entire program. If you declare
a myAccount variable, you can’t refer to it as MyAccount, myaccount, or
Myaccount. If you capitalize the variable name two different ways, Java
thinks you’re referring to two completely different variables.

For more info on Java’s case-sensitivity, see Chapter 3.

Breaking Out of a switch Statement
If you don’t break out of a switch statement, you get fall-through. For instance,
if the value of verse is 3, the following code prints all three lines — Last refrain,
He's a pain, and Has no brain:

switch (verse) {

case 3:

 out.print("Last refrain, ");

 out.println("last refrain,");

case 2:

 out.print("He's a pain, ");

 out.println("he's a pain,");

case 1:

 out.print("Has no brain, ");

 out.println("has no brain,");

}

For the full story, see Chapter 5.

Comparing Values with a Double
Equal Sign

When you compare two values with one another, you use a double equal sign.
The line

if (inputNumber == randomNumber)

CHAPTER 18 Ten Ways to Avoid Mistakes 459

is correct, but the line

if (inputNumber = randomNumber)

is not correct. For a full report, see Chapter 5.

Adding Components to a GUI
Here’s a constructor for a Java frame:

public SimpleFrame() {

 JButton button = new JButton("Thank you...");

 setTitle("...Katie Mohr and Paul Levesque");

 setLayout(new FlowLayout());

 add(button);

 button.addActionListener(this);

 setSize(300, 100);

 setVisible(true);

}

Whatever you do, don’t forget the call to the add method. Without this call, you go
to all the work of creating a button, but the button doesn’t show up on your frame.
For an introduction to such issues, see Chapter 9.

Adding Listeners to Handle Events
Look again at the previous section’s code to construct a SimpleFrame. If you forget
the call to addActionListener, nothing happens when you click the button. Click-
ing the button harder a second time doesn’t help. For the rundown on listeners,
see Chapter 16.

Defining the Required Constructors
When you define a constructor with parameters, as in

public Temperature(double number)

460 PART 5 The Part of Tens

then the computer no longer creates a default parameterless constructor for you.
In other words, you can no longer call

Temperature roomTemp = new Temperature();

unless you explicitly define your own parameterless Temperature constructor. For
all the gory details on constructors, see Chapter 9.

Fixing Non-Static References
If you try to compile the following code, you get an error message:

class WillNotWork {

 String greeting = "Hello";

 public static void main(String args[]) {

 System.out.println(greeting);

 }

}

You get an error message because main is static, but greeting isn’t static. For the
complete guide to finding and fixing this problem, see Chapter 10.

Staying within Bounds in an Array
When you declare an array with ten components, the components have indices
0 through 9. In other words, if you declare

int guests[] = new int[10];

then you can refer to the guests array’s components by writing guests[0],
guests[1], and so on, all the way up to guests[9]. You can’t write guests[10],
because the guests array has no component with index 10.

For the latest gossip on arrays, see Chapter 11.

CHAPTER 18 Ten Ways to Avoid Mistakes 461

Anticipating Null Pointers
This book’s examples aren’t prone to throwing the NullPointerException, but in
real-life Java programming, you see that exception all the time. A NullPointer
Exception comes about when you call a method that’s supposed to return an
object, but instead the method returns nothing. Here’s a cheap example:

import static java.lang.System.out;

import java.io.File;

class ListMyFiles {

 public static void main(String args[]) {

 File myFile = new File("/Users");

 String dir[] = myFile.list();

 for (String fileName : dir) {

 out.println(fileName);

 }

 }

}

This program displays a list of all files in the Users directory.

But what happens if you change /Users to something else — something that
doesn’t represent the name of a directory?

File myFile = new File("&*%$!!");

Then the new File call returns null (a special Java word meaning nothing), so the
variable myFile has nothing in it. Later in the code, the variable dir refers
to nothing, and the attempt to loop through all the dir values fails miserably.
You get a big NullPointerException, and the program comes crashing down
around you.

To avoid this kind of calamity, check Java’s API documentation. If you’re calling a
method that can return null, add exception-handling code to your program.

For the story on handling exceptions, see Chapter 13. For some advice on reading
the API documentation, see Chapter 3 and this book’s website (www.allmycode.
com/JavaForDummies).

http://www.allmycode.com/JavaForDummies)
http://www.allmycode.com/JavaForDummies)
http://www.allmycode.com/JavaForDummies

462 PART 5 The Part of Tens

Helping Java Find Its Files
You’re compiling Java code, minding your own business, when the computer
gives you a NoClassDefFoundError. All kinds of things can be going wrong, but
chances are good that the computer can’t find a particular Java file. To fix this, you
must align all the planets correctly:

 » Your project directory has to contain all the Java files whose names are used
in your code.

 » If you use named packages, your project directory has to have appropriately
named subdirectories.

 » If you’re running code from your computer’s command line, your CLASSPATH
environment variable must be set properly.

For specific guidelines, see Chapter 14 and this book’s website (www.allmycode.
com/JavaForDummies).

http://www.allmycode.com/JavaForDummies)
http://www.allmycode.com/JavaForDummies)
http://www.allmycode.com/JavaForDummies

CHAPTER 19 Ten Websites for Java 463

IN THIS CHAPTER

 » Checking out this book’s website

 » Finding resources from Oracle

 » Reading more about Java

Ten Websites for Java

No wonder the web is popular: It’s both useful and fun. This chapter proves
that fact by listing ten useful and fun websites. Each website has resources
to help you use Java more effectively. And as far as I know, none of these

sites uses adware, pop-ups, or other grotesque things.

This Book’s Website
For all matters related to the technical content of this book, visit www.allmycode.
com/JavaForDummies.

For business issues (for example, “How can I purchase 100 more copies of Java For
Dummies?”), visit www.dummies.com.

The Horse’s Mouth
The official Oracle website for Java is www.oracle.com/technetwork/java.

Check the official Java API documentation at http://docs.oracle.com/javase/8/
docs/api.

Chapter 19

http://www.allmycode.com/JavaForDummies
http://www.allmycode.com/JavaForDummies
http://www.dummies.com
http://www.oracle.com/technetwork/java
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/

464 PART 5 The Part of Tens

Consumers of Java technology should visit www.java.com.

Programmers and developers interested in sharing Java technology can go to
https://community.oracle.com/community/java.

Finding News, Reviews, and Sample Code
For articles by the experts, visit InfoQ at www.infoq.com and TheServerSide at
www.theserverside.com. You always find good reading at these two sites.

Got a Technical Question?
If you’re stuck and need help, search for answers and post questions at Stack
Overflow (stackoverflow.com).

You can also post questions on the Beginning Java Forum at JavaRanch where the
forum’s motto is “No question too simple or small . . .” (coderanch.com/f/33/
java).

And don’t forget. If you have questions about anything you read in this book,
send email to me at JavaForDummies@allmycode.com, post a question on www.
facebook.com/allmycode, or tweet to the Burd with @allmycode.

http://www.java.com
https://community.oracle.com/community/java
http://www.infoq.com
http://www.theserverside.com/
http://stackoverflow.com/
https://coderanch.com/f/33/java
https://coderanch.com/f/33/java
mailto:JavaForDummies@allmycode.com
http://www.facebook.com/allmycode
http://www.facebook.com/allmycode

Index 465

Index
Special Characters
- - (double minus signs), 98, 100
- (minus sign), 94
! (not) logical operator, 121
!= (is not equal to) operator, 117
% (percent sign), 94, 204
&& (and) logical operator, 121
* (asterisk), 94, 121
/ (slash), 94
\ (backslash), 211, 318
\\ (double backslashes), 299
\b (backspace) escape sequence, 299
\f (form feed) escape sequence, 299
\n (line feed) escape sequence, 299
\r (carriage return) escape sequence, 299
\t (horizontal tab) escape sequence, 299
{} (curly braces), 112–113
|| (or) logical operator, 121, 126
+ (plus sign), 93–94
++ (double plus signs), 98–100
< (is less than) operator, 117
<= (is less than or equal to) operator, 117
< > (diamond) operator, 327
== (double equal sign), 112, 458–459
== (is equal to) operator, 117
> (is greater than) operator, 117
>= (is greater than or equal to) operator, 117
\ " (double quote) escape sequence, 299
\ ' (single quote) escape sequence, 299

A
abstract classes. See also classes

defined, 418
overview, 417–418
using, 422–424
using or not using abstract methods, 425–426

AbstractCollection, 332

abstract keyword, 419
abstract method, 412, 417, 425–426
access modifiers

classes, 385–386
default access, 384, 396–398
defined, 384
directory structure, 391–392
frame making, 392–393
members, 385–388
nonpublic classes, 406–407
original code, 394–396
overview, 384–395
package declaration, 390
public class, 391, 406

accessor methods. See also methods
calling, 186
enforcing rules with, 190
making fields private, 188–189
simplicity, 186–187

Account class, 328
AccountDatabase folder, 447, 451
accumulator, 147
ActionListener class, 441
actionPerformed method
ActionListerer interface, 430–434
GUI interface, 436
overview, 434

addActionListener method, 432, 459
AddData program, 453–454
add method

adding components to GUI, 459
ArrayList object, 325
collection classes, 323
SimpleFrame object, 254

addMouseListener method, 441
and (&&) logical operator, 121
Android devices, 15
angle brackets (< >), 327

466 Java For Dummies

annotation, Java
@Override annotation, 414
overview, 226
SuppressWarnings annotation, 254–255, 435

anonymous inner class, 443–444
Apache Derby, 448
Apache Software Foundation, 448
application programming interface (API)

documentation for parse Int method, 355
identifiers from, 46–47
overview, 44–45

args array, 318–319
arguments, command line

checking for right number of, 319–320
defined, 316
overview, 315–317
using in programs, 317–318

ArithmeticException class, 374, 378–379
arithmetic operators, 93–94
array elements, 294–295
ArrayIndexOutOfBoundsException, 319, 322
ArrayList collection class, 323–325, 328, 332, 409
arrays

avoiding errors, 460
boundaries, 460
closing files, 306–307
component of, 294–295
creating, 296
defined, 294
enhanced for loop, 300–302
escape sequence, 299
initializer, 299–300
limitations of, 321–322
overview, 293–294
searching, 302–304
storing values, 297–298
writing to file, 305

arrays of objects
conditional operator, 313–315
NumberFormat class, 312–313
overview, 307–308
Room class, 309–310

ASCII character encoding, 85
assignment operators, 102–104
assignment statements, 70

asterisk (*), 94, 121
AT&T Bell Labs, 14
autoboxing, 329–330

B
backslash characters

double backslashes, 299
escape sequence, 299
in Java, 211, 318

backspace (\b) escape sequence, 299
Backus, John, 333
Beginning Java Forum, 464
BigDecimal class, 181
BigDecimal type, 74, 313
BinaryOperator lambda expression,

342, 345
bits

ASCII character encoding, 85
defined, 71
interpretation as screen pixels, 71
Unicode, 85

blocks
defined, 97, 113
do statements, 154–155
JShell, 116–117
static initializer, 271

Blu-Ray devices, 15
Boldyshev, Konstantin, 33
boolean type, 83, 85–87
Boolean wrapper class, 328
break statements, 136–137
Bright, Herbert, 351
building blocks

application programming interface, 44–45
classes, 49–50
comments, 60–64
curly braces, 55–58
identifiers, 45–47
keywords, 45–47
methods, 50–53
specifications, 44
statements, 53–55

button, 436
bytecode, 29, 32, 35–36

Index 467

byte primitive type, 83
Byte wrapper class, 328

C
C# programming language, 15
C++ programming language, 14, 17–18, 326
calls

close , 306
printf , 204, 241–242
setMax, 271
setMin, 271
showMessageDialog, 125
System.out.println, 54–55, 84, 94, 104, 110, 305

cannot resolve symbol message, 282
capitalization, 457–458
carriage return (\r) escape sequence, 299
catch clause, 354, 359, 361–365, 373, 378
catch clause parameter, 356–357
Character.toUpperCase method, 84
character type, 83
Character wrapper class, 328
char type, 83–85
checked exceptions, 371, 374
child classes, 20, 217–218
Church, Alonzo, 339
classes

abstract
defined, 418
overview, 417–418
using, 422–424
using or not using abstract methods, 425–426

access modifiers, 385–386
child, 217–218
collection classes

AbstractCollection, 332
ArrayList, 332
HashMap, 332
HashSet, 332
LinkedList, 332
PriorityQueue, 332
Queue, 332
Stack, 332

creating objects, 164–167
defined, 18–19, 162–164

defining, 198–204, 260–261
defining method within, 169–173
free-form, 180
fully qualified name, 252, 403
inner, 408, 441–444
interface and, 410
members, 385
objects and, 18–19, 21–23
overview, 49–50
parameters

pass by reference, 287–289
pass by value, 285–287
returning object from method, 289–292
returning value from method, 287

parent, 217–218
programs and, 168
protected access, 402–403
public, 168–169
subclasses

constructors for, 245–246
creating, 216–219
overview, 214–215
protected access, 400–402
using, 219–224
using methods from, 226–229

superclass, 20
using methods from, 226–229
using object field, 167
variables

declaring, 164–167
initializing, 167

wrapper, 328–330
CLASSPATH environment variable, 462
class variables, 279
clauses
catch, 354, 359, 361–365, 373, 378
finally, 376–379
throw, 354
throws, 266, 354, 373–374
throws IOException, 207, 209
try, 354, 359, 364

close call, 306
COBOL programming language, 14
code name, 37

468 Java For Dummies

codes. See also software
abstract classes, 420–422
access modifiers, 386–387
Account class, 195–196
Account objects, 165
account that calculate its own interest, 174–175
account that displays itself, 171–172
adding comments to, 60–62
amountinAccount, 71–72
anonymous inner class, 443–444
ArtFrame class, 392–393
assignment operators, 103
checking out for first time, 47–48
class within class, 441–442
class with no name, 443–444
closing resources, 380–381
command line arguments, 317–318
counting boxes, 352–356
creating database and table, 446
default constructor, 248–249
defined, 12
defining frame, 251
destroying data, 453–454
displaying frame, 251, 262–263, 389
Drawing class, 390
drawing wider oval, 402–403
DummiesFrame, 191–193
employees, 199
exception handling, 359–360
fake code, 217–218
filling arrays with values, 298
FullTimeEmployee, 216
functional programming, 346
Guessing Game, 106, 114, 428–429
Hero Counts Boxes, 355
hiding fields, 186
incorrect program, 369
indenting if statements in, 113–114
interfaces, 415
int type, 75–76
InventoryLoop, 367–368
iterating through collection, 330–331
Java Collection, 323–324
local currency, 436–439
Looking for Vacant Room, 30
for loop, 144

MakeChange, 87
making numbers right, 181
making query, 451–453
nested if statements, 128
PartTimeEmployee, 219
password checking, 119–120
Pentium processor, 33
Player class, 260, 262
PowerPC processor, 34
protected fields, 400–401
reference types, 87
repeating guessing game, 140–141
reusing existing

classes, 198–204
disk files, 205–214
overriding existing methods, 224–228
subclasses, 214–224

Room class, 309–310
Sale class, 336–337
simple calculator, 194
simplest program, 48
storing Integer values in ArrayList, 329
subclasses, 401
subclass of Drawing class, 395
switch statements, 132–133
switch statement with fall-through, 135
Team Batting Average, 269
Temperature class, 234–237
TemperatureNice class, 243–244, 246–247
thinking of a number, 194–195
this keyword, 433–434
username and password checking, 122
using comments to experiment with, 63–64
using subclasses, 220–221
using two files, 379–380
writing payroll checks, 200

coding
arithmetic operators, 93–94
ASCII character encoding, 85
assignment operators, 102–104
assignment statements, 70
asterisk (*), 94, 121
bits

ASCII character encoding, 85
defined, 71
Unicode, 85

Index 469

blocks
defined, 97, 113
do statements, 154–155
JShell, 116–117
static initializer, 271

boolean type, 83, 85–87
break statements, 136–137
calls
close , 306
printf , 204, 241–242
setMax, 271
setMin, 271
showMessageDialog, 125
System.out.println, 54–55, 84, 94, 104,

110, 305
char type, 83–85
comparison operators, 117–121
conditions, 111–112, 125–127
counting loops, 144–145
curly braces ({})

C programming language, 14
if statements, 112–113
overview, 55–59

decimal number types, 83
decimal point, 73–74
declarations

combining, 77–78
import , 91–93, 96, 115, 252
mess, 327
method, 52
package, 390
scan1, 381
scan2, 381
variables, 72, 77–78, 154–155

decrement operators, 98–102
do statements

blocks, 154–155
file handling, 154–156
overview, 150–152
reading single character, 154
variable declarations, 154–155

double equal sign (==), 112, 458–459
double minus signs (- -), 98, 100
double plus signs (++), 98–100
double primitive type, 83
double type, 72, 83

else part, if statements, 114–115
expressions

vs. conditions, 112
lambda, 339–347

fall-throughs, 134–136
false value, 87, 308
float type, 72–74, 83, 309
frames

defined, 91
defining, 251
displaying, 251, 262–263, 389
making, 392–394
putting drawing on, 389–390

graphical user interface (GUI), 190–193
adding components to, 459
avoiding errors, 459

if statements
conditions, 111–112
curly braces, 112–113
else part, 114–115
indenting, 113–114
nesting, 127–129
overview, 106–110
randomness, 110–111

import declaration
if statements, 115
overview, 91–93
packages and, 252
static, 96

increment operators, 98–102
indenting, if statements, 113–114
int primitive type, 83
int type, 83
int value, 311, 318–319
JFrame reference type, 88–89
keyboard.next method, 120, 123, 154
logical operators, 121–124
logical types, 83
long primitive type, 83
loops

counting, 144–145
do statements, 150–152, 154–156
overview, 140
range-of-values, 301
for statements, 143–146
while loop, 141

470 Java For Dummies

coding (continued)

method calls, 51
minus (-) sign, 94
not (!) logical operator, 121
null values, 124–125
numbers

comparing, 117–118
making numbers right, 181
whole, 77
without decimal points, 75–77

operators
arithmetic, 93–94
assigning, 97
asterisk (*), 94
comparison, 117–121
conditional, 313–315
decrement, 98–102
increment, 98–102
logical, 121–124
postdecrement, 100
postincrement, 99–100
predecrement, 100
preincrement, 98–99
remainder, 94–95
slash (/), 94

parentheses
conditions in parentheses, 125–127
expression in, 145
initialization in, 145
methods in, 172–173
update in, 145

postdecrement operators, 100
postincrement operators, 99–100
primitive (simple) types
boolean type, 85–87
byte type, 83
double type, 72, 83
float type, 72–74, 83
int type, 83
overview, 82–83, 409
short type, 83
wrapper class, 328

repeating statements
do statements, 150–152, 154–156
overview, 140

range-of-values, 301
for statements, 143–146
while loop, 141

reply variable, 156
short primitive type, 83
single character, reading, 154
slash (/), 94
statements
for , 143–146
assignment, 70
break, 136–137
comparison operators and, 117–121
do, 144, 150–157
expressions and, 101
for, 143–150
i++ statement, 366–367
if, 106–115, 127–129
logical operators, 121–124
null values, 124–125
overview, 53–55
return, 178–179
switch , 130–137, 238, 458
try, 356, 379–381
try-catch statement, 356, 367–369, 372, 374–375
try-with-resources, 449
while, 141

static keyword, 267–270, 273–274
switch statements

avoiding errors, 458
breaking out of, 458
enum types and, 238
fall-throughs, 134–136
overview, 130–134
strings in, 136–137

System.in, 108, 115
System.out.println call, 54–55, 84, 94, 104, 110,

305
text, displaying, 73–74
types, value, 71–74
values

defined, 69
types of, 71–74

variables
assignment statements, 70
class, 279
combining declarations, 77–78

Index 471

declaring, 164–167
defined, 68
displaying text, 73–74
functional programming, 349
import declaration, 91–93
initializing, 77–78, 167
instance, 163, 279
method-local, 279–280
numbers without decimal points, 75–77
operators, 93–104

void, 412
while statements, 141
whole number types, 83

collection classes
AbstractCollection, 332
ArrayList, 323–325, 332
generics, 325–327
HashMap, 332
HashSet, 332
iterator, 330–331
LinkedList, 332
overview, 323
PriorityQueue, 332
Queue, 332
Stack, 332
testing for more data, 330
wrapper classes, 328–330

Color class, 441
ColumnOfNumbers class, 416
combo box, 440
command d, 333
command i, 333
command line arguments

checking for right number of, 319–320
defined, 316
overview, 315–317
using in programs, 317–318

command prompt window, 316
command r, 333
comments

adding to code, 60–62
defined, 60
end-of-line, 61
javadoc, 61–62
overview, 59

traditional, 61
using to experiment with code, 63–64

comparetoIgnoreCase method, 332
compareTo method, 328
comparison operators

comparing characters, 117–121
comparing numbers, 117–118
comparing objects, 118–121
importing with, 121
is equal to (==) operator, 117
is greater than (>) operator, 117
is greater than or equal to (>) operator, 117
is less than (<) operator, 117
is less than or equal to (<) operator, 117
is not equal to (!=) operator, 117

compiler
defined, 28–29
overview, 30–32

computer, tools to install on, 28–36
computer bug, 351
Computer Folklore newsgroup, 352
Computer magazine, 352
computer programming language

C, 14
C#, 15
C++, 14, 17–18, 326
COBOL, 14
defined, 12
FORTRAN, 14
Fortran, 17
history of, 14–15
Java, 14–15, 18
object-oriented, 16
SIMULA, 17
Smalltalk, 17

computers
advantages of, 11–12
moving ideas with, 11
portability, 35
reasons for using, 11–12
working with, 11

Computer Science Advanced Placement exams, 15
concatenation

operator, 447
String values, 93–94

472 Java For Dummies

conditional operator, 313–315
conditions

double equal sign, 112
vs. expressions, 112
if statements, 111–112
in parentheses, 125–127

conditionToBeTested condition, 313
conn.createStatement, 449
CONNECTION, 452
constructors. See also objects
Account class, 166
avoiding errors, 459–460
default, 247–250
defined, 235
defining, 459–460
enum type, 233–241
FlowLayout method, 253
GameFrame class, 430
JButton class, 253–254
JCheckBox class, 253
JFrame class, 252–253
JMenuBar class, 253
overview, 232–233
setDefaultCloseOperation method, 253
setLayout method, 253
setSize method, 254
setTitle method, 253
setVisible method, 254
simpleFrame class, 254
subclasses and, 245–246
SuppressWarnings annotation, 254–255

Consumer lambda expression, 342
controlling program flow

with decision-making statements
comparison operators, 117–121
conditions in parentheses, 125–127
if statements, 106–115, 127–129
logical operators, 121–124
null values, 124–125
overview, 104–105
switch statements, 130–137

with loops
do statements, 150–152, 154–156
overview, 140
range-of-values, 301

for statements, 143–146
while loop, 141

copying code, disk files, 206–207
counting loops, 144–145
C programming language, 14
Cross Reference icon, 6
curly braces ({})

C programming language, 14
if statements, 112–113
overview, 55–59

D
data

destroying, 453–454
inserting, 450
retrieving, 451–453
storing, 205–206
testing for more, 330

database
creating, 446–447
drivers, 448
vendors, 448

dataIn, 368
dataInStrm, 379, 381
dataOut, 368
dataOutStrm, 379, 381
decFormat field, 270, 275
decFormat.setMaximum, 261
decFormat.setMaximumIntegerDigits, 270
decFormat. setMinimum, 261
DecimalFormat class, 261, 312–313
DecimalFormat object, 305
decimal number types, 83
decimal point, 73–74, 109
decision-making statements

comparison operators
comparing characters, 117–121
comparing numbers, 117–118
comparing objects, 118–121
importing with, 121
is equal to (==) operator, 117
is greater than (>) operator, 117
is greater than or equal to (>) operator, 117
is less than (<) operator, 117

Index 473

is less than or equal to (<) operator, 117
is not equal to (!=) operator, 117

conditions in parentheses, 125–127
if statements

conditions, 111–112
curly braces, 112–113
else part, 114–115
indenting, 113–114
nesting, 127–129
overview, 106–110
randomness, 110–111

logical operators, 121–124
null values, 124–125
overview, 104–105
switch statements, 130–137

declarations
combining, 77–78
import , 91–93, 96, 115, 252
mess, 327
method, 52
package, 390
scan1, 381
scan2, 381
variables, 72, 77–78, 154–155

decrement operators, 98–102
default access, 164, 384, 396–398
default constructors, 247–250
default method, 417
DeletableColumnOfNumbers class, 416
Deletable interface, 416
DeletableTable class, 416
developer version, 37
diamond (< >) operator, 327
directory names, adding to file names, 211
directory structure, 391–392
disk files. See also files

adding directory names to filenames, 211
closing connection to, 213–214
copying and pasting code, 206–207
FileNotFoundException, 210
overview, 205
reading from, 208–210, 212
storing data, 205–206

diskScanner, 306–307
Displayable interfaces, 411–412
Displayer class, 26

displayMe method, 416
display method, 172–173, 305, 341, 411–413
do statements. See also statements

blocks, 154–155
file handling, 154–156
overview, 150–152
reading single character, 154
variable declarations, 154–155

double backslashes (\\), 299
double equal sign (==), 112, 458–459
double minus signs (- -), 98, 100
double parameter, 249
double plus signs (++), 98–100
double primitive type, 73, 83, 309
double quote (\") escape sequence, 299
double value, 109
Double wrapper class, 328
DrawingWideBB class, 399
drawOval method, 390–391, 395–401, 407
DriverManager.getConnection, 449
drop-down list (JComboBox), 440
duration method, 250

E
Eclipse IDE, 26, 41, 203, 435, 446
else part, if statements, 114–115
end-of-line comments, 61
Enterprise Edition (EE), 26
enum type, 233–241
enum values, 267
equals method, 118
errors, avoiding

adding components to GUI, 459
adding listeners to handle events, 459
array boundaries, 460
capitalization, 457–458
comparing values, 458–459
defining constructors, 459–460
finding files, 462
fixing non-static references, 460
null pointers, 461

escape sequences
backspace, 299
carriage return, 299
defined, 299

474 Java For Dummies

escape sequences (continued)

double backslashes, 299
double quote, 299
form feed, 299
horizontal tab, 299
line feed, 299
single quote, 299

event handling, 430, 459
event-handling code, 430
events, 430
Exception class, 354
exception handling
catch clause parameter, 356–357
catching two or more exceptions, 365–366
checked exceptions, 371
defined, 353
exception types, 357–359
finally clause, 376–379
good exceptions, 368–369
IOException, 366–367
overview, 352–356
try-catch statement, 367–369, 372,

374–375
try statement, 379–381
unchecked exceptions, 371

exceptions
cascading, 377
checked, 371, 374
custom, 357–358
detecting, 374
unchecked, 371, 374

executeQuery method, 452
executeUpdate method, 447–449, 452
existing codes, reusing

classes, 198–204
disk files

adding directory names to filenames, 211
closing connection to, 213–214
copying and pasting code, 206–207
FileNotFoundException, 210
overview, 205
reading from, 208–210, 212
storing data, 205–206

subclasses
creating, 216–219
overview, 214–215
using, 219–224

expressions
vs. conditions, 112
lambda
BinaryOperator, 342
categories, 342
Consumer, 342
Function, 342
overview, 339–340
Predicate, 342–343
side effect, 340–341
streams and, 342–347
with two parameters, 340–341

for statement, 145–146
statements and, 101

F
factorials, 147
factory method, 312
fall-throughs, 134–136
false value, 87, 308
fields
decFormat field, 270, 275
defined, 163
hiding, 186
making private, 188–189
MAX_EXPONENT field, 328
MAX_VALUE field, 328
number field, 235, 239, 245
objects, 167
protected, 400–401
scale field, 245
serialVersionUID field, 255, 435–436
text field, 436, 439

File class, 209
file handling, 154–156
File instance, 208
filenames

adding directory names to, 211
fully qualified, 252, 403
sharing

access modifiers, 384–394, 406–407
default access, 396–398
directory structure, 391–392
making frames, 392–394
packages, 399–400
protected access, 400–403

Index 475

file naming
Java convention, 50
public classes and, 169

FileNotFoundException, 210, 375
File object, 208
files

closing, 306–307
disk files

adding directory names to filenames, 211
closing connection to, 213–214
copying and pasting code, 206–207
FileNotFoundException, 210
overview, 205
reading from, 208–210, 212
storing data, 205–206

finding, 462
input, 320
output, 320
writing to, 305

fillOval method, 403
filter method, 343–344
final keyword, 242
finally clause, 376–379
findWithinHorizon, 237
float primitive type, 83
float type, 72–74, 83, 309
Float wrapper class, 328
FlowLayout method, 253
fonts, 122
for loop

enhanced, 300–302
iterations, 325

format method, 305
format string, 182–184
format variable, 242
form feed (\f) escape sequence, 299
for statements. See also statements

defined, 144
expression, 145–146
initialization, 145–146
overview, 143–144
update, 145–146

FORTRAN, 17, 333, 351–352
frames

components, 436
defined, 91

defining, 251
displaying, 251, 262–263, 389
making, 392–394
putting drawing on, 389–390

free-form classes, 180
Free On-line Dictionary of Computing, 352
functional programming

advantages of using, 348–349
assembly line, 343
lambda expressions
BinaryOperator, 342
categories, 342
Consumer, 342
Function, 342
overview, 339–340
Predicate, 342–343
side effect, 340–341
streams and, 342–347
with two parameters, 340–341

method references, 350
methods, 343
overview, 333–335
problem solving with, 336–338
side effect, 341
streams, 338
variables, 349

Function lambda expression, 342

G
GameFrame class, 430, 443
generics, collection classes, 325–327
getArray method, 453
getAverageString method, 261, 270–271
getBigDecimal method, 453
getBlob method, 453
getCurrencyInstance method, 312–313
getInt method, 453
getMessage, 356
getName method, 275
getNumber method, 245
getObject method, 453
getScale method, 245
getText, 434
getTimeStamp method, 453
Google, 15, 345

476 Java For Dummies

Gosling, James, 18, 326
g parameter, 391
grammar, 44
graphical user interface (GUI)

adding components to, 459
avoiding errors, 459
creating, 190–193

graphical user interface (GUI) program, 82
graphics buffer, 391
Graphics class, 403
GridLayout, 265
guests, 460
GUI Builder, 435–436
GUI Designer, 435–436

H
handling exceptions
catch clause parameter, 356–357
catching two or more exceptions, 365–366
checked exceptions, 371
defined, 353
exception types, 357–359
finally clause, 376–379
good exceptions, 368–369
IOException, 366–367
overview, 352–356
try-catch statement, 367–369, 372, 374–375
try statement, 379–381
unchecked exceptions, 371

Harvard Mark II computer, 351
HashMap collection class, 332
HashSet collection class, 332
hasNextDouble method, 330
hasNextInt method, 330
hasNext method, 330
header, 172–173
Hopper., Grace, 14
horizontal tab (\t) escape sequence, 299

I
i++ statement, 366–367
IBM, 448
IBM 704 computer, 351
icons, 5–6

IDE (integrated development environment)
defined, 26, 29
Eclipse IDE, 26, 41
IntelliJ IDEA, 26
NetBeans, 27, 42
overview, 40–42

identifiers, 46
if statements. See also statements

conditions, 111–112
curly braces, 112–113
else part, 114–115
indenting, 113–114
nesting, 127–129
overview, 106–110
randomness, 110–111

imperative programming, 333–335
implements keyword, 413
import declaration. See also declarations
if statements, 115
overview, 91–93
packages and, 252
static, 96

incompatible types message, 292
increment operators, 98–102
indenting, if statements, 113–114
IndexOutOfBoundsException class, 374
InfoQ, 464
inheritance, 20
initialization, for statement, 145–146
inner classes, 408, 441–444
input file, 320
instance variable, 163, 279
Integer class, 318–319, 328
Integer values, 332
integrated development environment (IDE)

defined, 26, 29
Eclipse IDE, 26, 41
IntelliJ IDEA, 26
NetBeans, 27, 42
overview, 40–42

IntelliJ IDEA, 26, 203, 435, 446
interfaces

abstract method, 417
classes and, 410
codes to create, 410

Index 477

default method, 417
Displayable, 411–412
implementing, 412–414
overview, 410–411
Summarizable, 412

InterruptedException, 371, 373–374
int primitive type, 83
int type, 83
int value, 311, 318–319
IOException class, 209, 266–267, 364, 366–367, 374
is equal to (==) operator, 117
is greater than (>) operator, 117
is greater than or equal to (>) operator, 117
is less than (<) operator, 117
is less than or equal to (<) operator, 117
is not equal to (!=) operator, 117
ItemListener class, 441
itemStateChanged method., 441
iterator, 330–331

J
Java

building blocks
application programming interface, 44–45
classes, 49–50
comments, 60–64
curly braces, 55–58
identifiers, 45–47
keywords, 45–47
methods, 50–53
specifications, 44
statements, 53–55

bytecode, 29, 32, 35–36
defined, 12
event-handling thread, 431–432
file handling in, 154–156
history of computer programming, 14–15, 18
integrated development environment (IDE), 26–27
interface, 410–417
Java 2 Standard Edition 1.2, 37–38
Java 5.0, 327
object-oriented programming (OOP), 16–23
primitive types, 82–87
reason to use, 13
serialVersionUID, 435–436

source code, 30–31
versions, 37–38
websites, 462

java.awt.event package, 398
java.awt.Graphics class, 391, 395–401, 407
java.awt package, 398
Java Community Process (JCP), 45, 47
Java Database Connectivity (JDBC)

connecting, 449
creating database and table, 446–447
destroying data, 453–454
disconnecting, 449
overview, 445
putting data in table, 450
retrieving data, 451–453
running code, 447
SQL commands, 447–448

Java Development Kit (JDK)
defined, 37
installing, 26

javadoc comments, 61–62
.java extension, 169
JavaFX, 436
java.io.File class, 154–155
java.io.PrintStream, 305
Java Language Specification, 44, 403
Java programs

abstract classes, 420–422
access modifiers, 386–387
Account class, 195–196
Account objects, 165
account that calculate its own interest, 174–175
account that displays itself, 171–172
amountInAccount, 71–72
anonymous inner class, 443–444
ArtFrame class, 392–393
assignment operators, 103
class within class, 441–442
class with no name, 443–444
closing resources, 380–381
command line arguments, 317–318
counting boxes, 352–356
creating database and table, 446
default constructor, 248–249
defining frame, 251
destroying data, 453–454

478 Java For Dummies

Java programs (continued)

displaying frame, 251, 262–263, 389
Drawing class, 390
drawing wider oval, 402–403
DummiesFrame, 191–193
employees, 199
exception handling, 359–360
fake code, 217–218
filling arrays with values, 298
FullTimeEmployee, 216
functional programming, 346
Guessing Game, 106, 114, 428–429
Hero Counts Boxes, 355
hiding fields, 186
incorrect program, 369
interfaces, 415
int type, 75–76
InventoryLoop, 367–368
iterating through collection, 330–331
Java Collection, 323–324
local currency, 436–439
Looking for Vacant Room, 30
for loop, 144
MakeChange, 87
making numbers right, 181
making query, 451–453
nested if statements, 128
PartTimeEmployee, 219
password checking, 119–120
Pentium processor, 33
Player class, 260, 262
PowerPC processor, 34
protected fields, 400–401
reference types, 87
repeating guessing game, 140–141
Room class, 309–310
Sale class, 336–337
simple calculator, 194
simplest program, 48
storing Integer values in ArrayList, 329
subclasses, 401
subclass of Drawing class, 395
switch statements, 132–133
switch statement with fall-through, 135
Team Batting Average, 269

Temperature class, 234–237
TemperatureNice class, 243–244, 246–247
thinking of a number, 194–195
this keyword, 433–434
username and password checking, 122
using subclasses, 220–221
using two files, 379–380
writing payroll checks, 200

JavaRanch, 464
Java Runtime Environment (JRE), 37
java.sql, 446
java.util package, 252
java.util.Scanner

counting boxes, 353, 355
custom-made exception, 357–358
to delete or not to delete, 152
exceptions, 360, 367–368
filling arrays with values, 298
Guessing Game, 114, 140, 201
implementing interfaces, 414
import declaration, 252
importing, 108
iterating through collection, 330
keyboard, 107–108
nested if statements, 128
password checking, 119
payroll checks, 200
Player class, 262
repeating Guessing Game, 140
Room class, 309
switch statements, 132
switch statement with fall-through, 135
switch statement with string, 137
try-catch statement, 369
try-with-resources statement, 380–381
using two files, 379
working with Java collection, 323

Java Virtual Machine (JVM)
defined, 29, 32
overview, 32–36
threads of execution, 431

javax.sql package, 446
javax.swing, 92, 252–254, 434
JButton class, 253–254, 436
JCheckBox class, 253

Index 479

JCombox, 440
JCP (Java Community Process), 47
JDBC (Java Database Connectivity)

connecting, 449
creating database and table, 446–447
destroying data, 453–454
disconnecting, 449
overview, 445
putting data in table, 450
retrieving data, 451–453
running code, 447
SQL commands, 447–448

JDK (Java Development Kit)
defined, 37
installing, 26

Jetbrains, 26
JFrame class

creating objects, 89–90
import declaration, 92, 252–253
overview, 44, 409
wrapper classes, 328

JFrame reference type, 88–89
JLabel class, 265, 434, 436
JMenuBar class, 253
JOptionPane, 123–124
Journal Entries, 16–23
JShell

declarations and statements, 255
overview, 78–81
session, 201
using blocks in, 116–117

JTextField class, 430, 434, 436
JUnit, 180
JVM (Java Virtual Machine)

defined, 29, 32
overview, 32–36
threads of execution, 431

K
keyboard.next method, 120, 123, 154
keyboard variable, 307
KeyListener class, 440
keyPressed method, 440
keyReleased method, 440
keyTyped method, 440

keywords
abstract, 419
defined, 46
double, 72
final, 242
implements, 413
private, 188, 384
public, 384–386
static, 267–270, 273–274
super, 419
this, 432–434

L
labels, 436, 439
lambda expressions
BinaryOperator, 342, 345
categories, 342
Consumer, 342
Function, 342
overview, 339–340
Predicate, 342–343
side effect, 340–341
streams and, 342–347
with two parameters, 340–341

language specification (Java Language Specification),
44, 403

line feed (\n) escape sequence, 299
LinkedList collection class, 332
Linux, 33–35, 206, 211, 298, 316, 318
list collection, 330
literals, 69
logical operators, 121–124
logical types, 83
long primitive type, 83
Long wrapper class, 328
loops

counting, 144–145
do statements

blocks, 154–155
file handling, 154–156
overview, 150–152
reading single character, 154
variable declarations, 154–155

overview, 140
range-of-values, 301

480 Java For Dummies

loops (continued)

for statements
defined, 144
expression, 145–146
initialization, 145–146
overview, 143–144
update, 145–146

while loop, 141

M
Macintosh operating system, 207, 211, 298, 316, 318
Macintosh TextEdit, 29
main method. See also methods
catch clause parameter, 356
exceptions, 266
GetGoing class, 278
overview, 52–53
ShowTeamFrame class, 272

MakeRandomNumsFile program, 316
map method

functional programming, 344
Stream object, 347

MapReduce programming model, 345
Mariner I spacecraft, 352
matching catch clause, 361
MAX_EXPONENT field, 328
MAX_VALUE field, 328
McCarthy, John, 333
members, 385
mess declaration, 327
method calls, 51
method declaration, 52
method-local variable, 279–280
method references, 350
methods

abstract, 412, 417, 425–426
accessor

calling, 186
enforcing rules with, 190
making fields private, 188–189
simplicity, 186–187

actionPerformed, 430–432, 434
add, 323, 325
addActionListener, 432, 459
addMouseListener, 441

from classes and subclasses, 226–229
compareTo, 328
comparetoIgnoreCase, 332
default, 417
defining within class, 169–173
display, 172–173, 305, 341, 411–413
displayMe, 416
duration, 250
equals, 118
factory, 312
fillOval, 403
filter, 343–344
FlowLayout, 253
format, 305
getArray, 453
getAverageString, 261, 270–271
getBigDecimal, 453
getBlob, 453
getCurrencyInstance, 312–313
getInt, 453
getName, 275
getNumber, 245
getObject, 453
getScale, 245
getTimeStamp, 453
hasNext, 330
hasNextDouble, 330
hasNextInt, 330
header, 172–173
itemStateChanged ., 441
keyPressed, 440
keyReleased, 440
keyTyped, 440
main, 52–53, 266, 272, 278, 356, 378
map, 344, 347
mouseClicked, 441
mouseEntered, 441
mouseExited, 441
mousePressed, 441
mouseReleased, 441
non-static, 274
overriding existing

annotation, 226
overview, 224–226
using methods from classes and subclasses,

226–228

Index 481

overview, 50–52
paint, 391–393
parseDouble, 328
parseInt , 318
passing value to, 176–178
print, 305
printf, 182–184, 241
println, 305
readByte, 368
reduce, 344
remove, 324
returning object from, 289–292
returning value from, 287
returning values from, 178–180
return type, 174
return value, 174
sending values to and from, 173–180
setColor, 403
setDefaultCloseOperation , 253
setLayout , 253, 265
setSize , 254
setTextOnLabel, 440
setTitle, 253
setVisible , 254, 266, 430–431
size, 332
sleep, 370
static, 268
stream, 344, 347
summarize, 412–413, 416
summarizeMe, 416
Thread.sleep, 371
toHexString, 328
tossing exception from methods to, 266

Microsoft, 15, 448
minus (-) sign, 94
mistakes, avoiding

adding components to GUI, 459
adding listeners to handle events, 459
array boundaries, 460
capitalization, 457–458
comparing values, 458–459
defining constructors, 459–460
finding files, 462
fixing non-static references, 460
null pointers, 461
switch statement, 458

MoneyFrame window, 439–440
mouse
actionPerformed method, 434
event-handling, 430–431
events, 430–431
inner classes, 441–444
overview, 427–428
serialVersionUID, 435–436
this keyword, 432–434
threads of execution, 431–432

mouseClicked method, 441
mouseEntered method, 441
mouseExited method, 441
MouseListener class, 441
mousePressed method, 441
mouseReleased method, 441
multicore processors, 334
multithreaded programs, 431
MySQL, 448

N
names

adding directory names to filenames, 211
fully qualified, 252, 403
sharing

access modifiers, 384–394, 406–407
default access, 396–398
directory structure, 391–392
making frames, 392–394
packages, 399–400
protected access, 400–403

variable, 69
NASA, 352
nested if statements, 127–129
NetBeans, 27, 42, 203, 435, 446
news websites, 464
nextDouble, 109, 213
nextInt, 109
nextLine, 213
next method. See also methods

iterator, 330, 338
reading single character, 154
stream, 338

NoClassDefFoundError, 462
nonpublic classes, 406–407. See also access modifiers

482 Java For Dummies

non-static method, 274
non-static references, 460
non-static variable or method cannot be

referenced from a static context message,
273–274

not (!) logical operator, 121
NullPointerException message, 125, 127,

374, 461
null pointers, 461
null values, 124–125
number field, 235, 239, 245
NumberFormat class, 312–313
NumberFormatException class, 319, 353, 356, 361,

366, 374
numbers

comparing, 117–118
making numbers right, 181
whole, 77
without decimal points, 75–77

NumberTooLargeException class, 361, 363, 365

O
object-oriented languages, 15
object-oriented programming (OOP)

advantages of using, 19–21
classes, 18–19
objects, 18–19
overview, 16–17
terminology, 21

objects. See also constructors
arrays of

conditional operator, 313–315
NumberFormat class, 312–313
overview, 307–308
Room class, 309–310

classes and, 18–19, 21–23
comparing objects, 118–121
creating, 164–167
fields, 167
PrintStream, 305
returning from method, 289–292
Stream, 347
String, 325

online resources
book, 463
InfoQ, 464

Java, 464
JavaRanch, 464
news, 464
Oracle, 463
reviews, 464
sample code, 464
Stack Overflow, 464
technical questions, 464
TheServerSide, 464

OOP (object-oriented programming)
advantages of using, 19–21
classes, 18–19
objects, 18–19
overview, 16–17
terminology, 21

OpenJDK Project, 45
operating systems

IBM 704 computer, 351
information in, 109
input and, 213
Linux, 33–35, 206, 211, 298, 316, 318
Macintosh, 207, 211, 298, 316, 318
overview, 25
processors and, 33
shell/window/terminal, 316
Windows

bytecode interpretation, 35–36
command prompt window, 316
data files, 206
file path names, 318
overview, 25
PATH variable, 393
Pentium processor and, 34

operators
arithmetic, 93–94
assigning, 97
assignment, 102–104
asterisk (*), 94
comparison

importing with, 121
is equal to (==) operator, 117
is greater than (>) operator, 117
is greater than or equal to (>) operator, 117
is less than (<) operator, 117
is less than or equal to (<) operator, 117
is not equal to (!=) operator, 117

Index 483

conditional, 313–315
decrement, 98–102
increment, 98–102
initializing, 97
logical, 121–124
overview, 93–96
postdecrement, 100
postincrement, 99–100
predecrement, 100
preincrement, 98–99
remainder, 94–95
slash (/), 94

or (||) logical operator, 121, 126
Oracle, 15, 29, 448, 463
OutOfRangeExceptioncatch class, 361
OutOfRangeException class, 362–366
output file, 320
@Override annotation, 414

P
package declaration, 390
packages
java.awt, 398
java.awt.event, 398
java.util, 252
javax.sql, 446

pack method, 265–266, 430–431
paint method, 391–393
parallel stream, 348
parameter list, 173, 237
parameters

overview, 173
pass by reference, 287–289
pass by value, 285–287
returning object from method, 289–292
returning value from method, 287

parent class, 217–218
parentheses

conditions in parentheses, 125–127
expression in, 145
initialization in, 145
methods in, 172–173
update in, 145

parseDouble method, 328

parseInt method, 318
pass by reference parameter, 287–289
pass by value parameter, 285–287
password, checking, 119–120
pasting code, disk files, 206–207
Pentium processor
Linux operating system, 33

simple program for, 33
percent sign (%), 94, 204
pixels, 71
Player class, 260, 262
PlayerPlus class, 268–273, 275, 279
plus sign (+), 93–94
Pope, Alexander, 150
PopularitY of Programming Language Index

(PYPL), 15
portability, 35
postdecrement operators, 100
PostgreSQL, 448
postincrement operators, 99–100
PowerPC processor, 33–34
pow routine, 45
predecrement operators, 100
Predicate lambda expression, 342–343
preincrement operator, 98–100
primitive (simple) types
boolean type, 85–87
byte type, 83
double type, 72, 83
float type, 72–74, 83
int type, 83
overview, 82–83, 409
short type, 83
wrapper class, 328

printf call, 204, 241–242
printf method, 182, 241
println, 179
println method, 305
print method, 305
printStackTrace, 356–357
PrintStream, 110
PrintStream object, 305
PriorityQueue collection class, 332
private access, 164, 398
private keyword, 188, 384

484 Java For Dummies

product version, 37
program flow

controlling with decision-making statements
comparison operators, 117–121
conditions in parentheses, 125–127
if statements, 106–115, 127–129
logical operators, 121–124
null values, 124–125
overview, 104–105
switch statements, 130–137

controlling with loops
do statements, 150–152, 154–156
overview, 140
range-of-values, 301
for statements, 143–146
while loop, 141

programming language
C, 14
C#, 15
C++, 14, 17–18, 326
COBOL, 14
defined, 12
FORTRAN, 14
Fortran, 17
history of, 14–15
Java, 14–15, 18
object-oriented, 16
SIMULA, 17
Smalltalk, 17

programning, functional
advantages of using, 348–349
assembly line, 343
lambda expressions
BinaryOperator, 342
categories, 342
Consumer, 342
Function, 342
overview, 339–340
Predicate, 342–343
side effect, 340–341
streams and, 342–347
with two parameters, 340–341

method references, 350

methods, 343
overview, 333–335
problem solving with, 336–338
side effect, 341
streams, 338
variables, 349

programs
classes and, 168
defined, 12
using command line arguments in, 317–318

protected access
classes, 398, 402–403
overview, 164, 400
subclasses, 400–402

public access. See also access modifiers
public access, 164, 398
public class

access modifiers, 406
Drawing class, 391
overview, 168–169

public keyword, 236, 384–386
PYPL (PopularitY of Programming Language

Index), 279

Q
query, making, 451–453
Queue collection class, 332
quick-start instructions, 25–28

R
randomnesss, creating, 110–111
range-of-values, 301
readByte method, 368
Read Evaluate Print Loop (REPL), 79
reduce method, 344
references

method, 350
non-static, 460
pass by (parameter), 287–289

reference types, 87–90, 329, 409
remainder operator, 94–95
Remember icon, 6

Index 485

Remington Rand, 14
remove method, 324
repeating statements
do statements

blocks, 154–155
file handling, 154–156
overview, 150–152
reading single character, 154
variable declarations, 154–155

overview, 140
range-of-values, 301
for statements

defined, 144
expression, 145–146
initialization, 145–146
overview, 143–144
update, 145–146

while loop, 141
REPL (Read Evaluate Print Loop), 79
reply variable, 156
result set, 452
ResultSet instance, 453
resultset.next, 452
return statement, 178–179
return type, 174
return value, 174
reusing existing code

classes, 198–204
disk files

adding directory names to filenames, 211
closing connection to, 213–214
copying and pasting code, 206–207
FileNotFoundException, 210
overview, 205
reading from, 208–210, 212
storing data, 205–206

subclasses
creating, 216–219
overview, 214–215
using, 219–224

reviews websites, 464
Ritchie, Dennis, 14
RunDisplayer.java, 26
RuntimeException class, 374

S
safe codes, 185
sample code websites, 464
SAP, 448
scale field, 245
scan1 declaration, 381
scan2 declaration, 381
Scanner class, 201–202, 330, 409
screen pixels, 71
SDK (Software Development Kit), 37
SE (Standard Edition), 26, 37–38
serial stream, 348
serialVersionUID field, 255, 435–436
setColor method, 403
setDefaultCloseOperation method, 253
setLayout method, 253, 265
setMax call, 271
setMaximumIntegerDigits, 270
setMin call, 271
setSize method, 254
setText, 434
setTextOnLabel method, 440
setTitle method, 253
setVisible method, 254, 266, 430–431
sharing names

access modifiers, 384–394, 406–407
default access, 396–398
directory structure, 391–392
making frames, 392–394
packages, 399–400
protected access, 400–403

shell, 316
short primitive type, 83
Short wrapper class, 328
ShowFrame class, 402
ShowFrameWideBB class, 402–403
showMessageDialog call, 125
side effect, 341
simple (primitive) types
boolean type, 85–87
byte type, 83
double type, 72, 83
float type, 72–74, 83

486 Java For Dummies

simple (primitive) types (continued)

int type, 83
overview, 82–83, 409
short type, 83
wrapper class, 329

simpleFrame class, 254
SIMULA computer programming language, 17
single character, reading, 154
single quote (\') escape sequence, 299
size method, 332
slash (/), 94
sleep method, 370
Smalltalk computer programming language, 17
software

compiler, 29–32
defined, 12
developing, 39–40
integrated development environment, 40–42
Java Virtual Machine, 32–36

Software Development Kit (SDK), 37
source code, 30–31
SQL (Structured Query Language) commands, 447–449
SQLException class, 374
Stack collection class, 332
Stack Overflow, 464
Standard Edition (SE), 26, 37–38
statements

for
defined, 144
expression, 145–146
initialization, 145–146
overview, 143–144
update, 145–146

assignment, 70
break, 136–137
comparison operators and, 117–121
do, 150–157

blocks, 154–155
defined, 144
file handling, 154–156
overview, 150–152
reading single character, 154
variable declarations, 154–155

expressions and, 101
for, 143–150

i++ statement, 366–367
if

conditions, 111–112
curly braces, 112–113
else part, 114–115
indenting, 113–114
nesting, 127–129
overview, 106–110
randomnesss, 110–111

logical operators, 121–124
null values, 124–125
overview, 53–55
return, 178–179
switch

avoiding errors, 458
breaking out of, 458
enum types and, 238
fall-throughs, 134–136
overview, 130–134
strings in, 136–137

try, 356, 379–381
try-catch statement

acknowledging exception with, 372, 374–375
handling inappropriate input, 369
inside loop, 367–368
overview, 356

try-with-resources, 449
while, 141

static initializer, 270–271
static keyword, 267–270, 273–274
static methods, 268
static variables, 275–276
stream method, 344, 347
Stream object, 347
streams

defined, 338
lambda expressions and, 342–347
parallel, 348
serial, 348

String class, 328, 332
string concatenation operator, 93–94, 447
String literal, 318
String objects, 325
strings, in switch statements, 136–137
String type, 88, 118, 409

Index 487

String values. See also values
ArrayList, 332
concatenating, 93–94
DecimalFormat class, 261

Stroustrup, Bjarne, 14, 17
Structured Query Language (SQL) commands, 447–449
subclasses. See also classes

constructors for, 245–246
creating, 216–219
overview, 214–215
protected access, 400–402
using, 219–224
using methods from, 226–229

Summarizable interface, 412
summarizeMe method, 416
summarize method, 412–413, 416
Sun Microsystems, 14
superclass, 20, 217
super keyword, 419
SuppressWarnings annotation, 254–255, 435
Swing, 436
switch statements

avoiding errors, 458
breaking out of, 458
enum types and, 238
fall-throughs, 134–136
overview, 130–134
strings in, 136–137

Sys-Con Media, 15
System.in, 108, 115
System.out, 108, 305
System.out.println call, 54–55, 84, 94, 104, 110, 305

T
Table class, 416
tables

creating, 446–447
putting data in, 450

technical questions, 464
Technical Stuff icon, 6
Ten Ways to Avoid Mistakes

adding components to GUI, 459
adding listeners to handle events, 459
array boundaries, 460

capitalization, 457–458
comparing values, 458–459
defining constructors, 459–460
finding files, 462
fixing non-static references, 460
null pointers, 461
switch statement, 458

terminal, 316
test case, 180
text, displaying, 73–74
text-based programs, 82
text editors, 29
text field, 436, 439
textField, 443
textMessage, 357
TheServerSide, 464
things collection, 327
this keyword, 432–434
Thread.sleep method, 371
throw clause, 354
throws clause, 266, 354, 373–374
throws IOException clause, 207, 209
TIOBE Programming Community Index, 15
Tip icon, 6
toHexString method, 328
totalOfAverages, 268–270
traditional comments, 61
try-catch statement. See also statements

acknowledging exception with, 372, 374–375
handling inappropriate input, 369
inside loop, 367–368
overview, 356

try clause, 354, 359, 364
try statement, 356, 379–381
try-with-resources statement, 449
types, value, 71–74

U
unchecked exceptions, 371, 374
Unicode, 85, 440
Unix, 316, 393
unreported exception error message, 209
update, for statements, 145–146
Users directory, 461

488 Java For Dummies

V
values. See also operators

arrays, 297–298
comparing, 458–459
creating, 93–104
defined, 69
double value, 109
enum values, 267
false, 87, 308
Integer values, 332
int value, 311, 318–319
null values, 124–125
passing to method, 176–178
range-of-values, 301
returning from method, 178–180, 287
return value, 174
sending to and from methods, 173–180
storing, 297–298
String values, 93–94, 261, 332
types of, 71–74

variable declarations, 72, 154–155
variable names, 69
variables

assignment statements, 70
class, 279
combining declarations, 77–78
declaring, 164–167
defined, 68
displaying text, 73–74
functional programming, 349
import declaration, 91–93
initializing, 77–78, 167
instance, 163, 279
method-local, 279–280
numbers without decimal points, 75–77
operators

assigning, 97
decrement, 98–102
increment, 98–102
overview, 93–96

overview, 68–69
putting in its place, 277–280
reference types, 87–90

reply, 156
static, 275–276
telling where to go, 280–284
value types, 71–74

versions, 37–38
vim editor, 29
void, 412

W
Warning icon, 6
websites

book, 463
InfoQ, 464
Java, 464
JavaRanch, 464
news, 464
Oracle, 463
reviews, 464
sample code, 464
Stack Overflow, 464
technical questions, 464
TheServerSide, 464

while loop, 141
while statements, 141
whole number types, 83
wildcard character (*), 121
WindowBuilder, 435–436
windows, 196
Windows Notepad, 29
Windows operating system

bytecode interpretation, 35–36
command prompt window, 316
data files, 206
file path names, 318
overview, 25
PATH variable, 393
Pentium processor and, 34

word processor, 333
wrapper classes, 328–330

Y
Year 2000 Problem, 352

About the Author
Barry Burd received a Master of Science degree in computer science at Rutgers
University and a PhD in mathematics at the University of Illinois. As a teach-
ing assistant in Champaign-Urbana, Illinois, he was elected five times to the
 university-wide List of Teachers Ranked as Excellent by Their Students.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics and
Computer Science at Drew University in Madison, New Jersey. He has lectured at
conferences in the United States, Europe, Australia, and Asia. He hosts podcasts
and videos about software and other technology topics. He is the author of many
articles and books, including Beginning Programming with Java For Dummies,
Java Programming for Android Developers For Dummies, and Android Application
 Development All-in-One For Dummies, all from Wiley.

Dr. Burd lives in Madison, New Jersey, with his wife of n years, where n > 35. In
his spare time, he enjoys being a workaholic.

Dedication

Author’s Acknowledgments
I heartily and sincerely thank Paul Levesque for his work on so many of my books
in this series.

Thanks also to Katie Mohr for her hard work and support in so many ways.

Thanks to Chad Darby and Becky Whitney for their efforts in editing this book.

Thanks to the staff at John Wiley & Sons, Inc. for helping to bring this book to
bookshelves.

Thanks to Jeanne Boyarsky, Frank Greco, Chandra Guntur, and Michael Redlich
for their advice on technical matters.

And a special thanks to Richard Bonacci and Cameron McKenzie for their long-
term help and support.

Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr

Senior Project Editor: Paul Levesque

Copy Editor: Becky Whitney

Technical Editor: Chad Darby

Editorial Assistant: Serena Novosel

Sr. Editorial Assistant: Cherie Case

Production Editor: Siddique Shaik

Cover Image: © Melpomene/Shutterstock

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Part 1: Getting Started with Java
	Part 2: Writing Your Own Java Program
	Part 3: Working with the Big Picture: Object-Oriented Programming
	Part 4: Smart Java Techniques
	Part 5: The Part of Tens

	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with Java
	Chapter 1 All about Java
	What You Can Do with Java
	Why You Should Use Java
	Getting Perspective: Where Java Fits In
	Object-Oriented Programming (OOP)
	Object-oriented languages
	Objects and their classes
	What’s so good about an object-oriented language?
	Refining your understanding of classes and objects

	What’s Next?

	Chapter 2 All about Software
	Quick-Start Instructions
	What You Install on Your Computer
	What is a compiler?
	What is a Java Virtual Machine?

	Developing software
	What is an integrated development environment?

	Chapter 3 Using the Basic Building Blocks
	Speaking the Java Language
	The grammar and the common names
	The words in a Java program

	Checking Out Java Code for the First Time
	Understanding a Simple Java Program
	The Java class
	The Java method
	The main method in a program
	How you finally tell the computer to do something
	Curly braces

	And Now, a Few Comments
	Adding comments to your code
	What’s Barry’s excuse?
	Using comments to experiment with your code

	Part 2 Writing Your Own Java Programs
	Chapter 4 Making the Most of Variables and Their Values
	Varying a Variable
	Assignment statements
	The types of values that variables may have
	Displaying text
	Numbers without decimal points
	Combining declarations and initializing variables

	Experimenting with JShell
	What Happened to All the Cool Visual Effects?
	The Atoms: Java’s Primitive Types
	The char type
	The boolean type

	The Molecules and Compounds: Reference Types
	An Import Declaration
	Creating New Values by Applying Operators
	Initialize once, assign often
	The increment and decrement operators
	Assignment operators

	Chapter 5 Controlling Program Flow with Decision-Making Statements
	Making Decisions (Java if Statements)
	Guess the number
	She controlled keystrokes from the keyboard
	Creating randomness
	The if statement
	The double equal sign
	Brace yourself
	Indenting if statements in your code
	Elseless in Ifrica

	Using Blocks in JShell
	Forming Conditions with Comparisons and Logical Operators
	Comparing numbers; comparing characters
	Comparing objects
	Importing everything in one fell swoop
	Java’s logical operators
	Vive les nuls!
	(Conditions in parentheses)

	Building a Nest
	Choosing among Many Alternatives (Java switch Statements)
	Your basic switch statement
	To break or not to break
	Strings in a switch statement

	Chapter 6 Controlling Program Flow with Loops
	Repeating Instructions Over and Over Again (Java while Statements)
	Repeating a Certain Number of Times (Java for Statements)
	The anatomy of a for statement
	The world premiere of “Al’s All Wet”

	Repeating until You Get What You Want (Java do Statements)
	Reading a single character
	File handling in Java
	Variable declarations and blocks

	Part 3 Working with the Big Picture: Object-Oriented Programming
	Chapter 7 Thinking in Terms of Classes and Objects
	Defining a Class (What It Means to Be an Account)
	Declaring variables and creating objects
	Initializing a variable
	Using an object’s fields
	One program; several classes
	Public classes

	Defining a Method within a Class (Displaying an Account)
	An account that displays itself
	The display method’s header

	Sending Values to and from Methods (Calculating Interest)
	Passing a value to a method
	Returning a value from the getInterest method

	Making Numbers Look Good
	Hiding Details with Accessor Methods
	Good programming
	Public lives and private dreams: Making a field inaccessible
	Enforcing rules with accessor methods

	Barry’s Own GUI Class

	Chapter 8 Saving Time and Money: Reusing Existing Code
	Defining a Class (What It Means to Be an Employee)
	The last word on employees
	Putting your class to good use
	Cutting a check

	Working with Disk Files (a Brief Detour)
	Storing data in a file
	Copying and pasting code
	Reading from a file
	Who moved my file?
	Adding directory names to your filenames
	Reading a line at a time
	Closing the connection to a disk file

	Defining Subclasses (What It Means to Be a Full-Time or Part-Time Employee)
	Creating a subclass
	Creating subclasses is habit-forming

	Using Subclasses
	Making types match
	The second half of the story

	Overriding Existing Methods (Changing the Payments for Some Employees)
	A Java annotation
	Using methods from classes and subclasses

	Chapter 9 Constructing New Objects
	Defining Constructors (What It Means to Be a Temperature)
	What is a temperature?
	What is a temperature scale? (Java’s enum type)
	Okay, so then what is a temperature?
	What you can do with a temperature
	Calling new Temperature(32.0): A case study
	Some things never change

	More Subclasses (Doing Something about the Weather)
	Building better temperatures
	Constructors for subclasses
	Using all this stuff
	The default constructor

	A Constructor That Does More
	Classes and methods from the Java API
	The SuppressWarnings annotation

	Part 4 Smart Java Techniques
	Chapter 10 Putting Variables and Methods Where They Belong
	Defining a Class (What It Means to Be a Baseball Player)
	Another way to beautify your numbers
	Using the Player class
	One class; nine objects
	Don’t get all GUI on me
	Tossing an exception from method to method

	Making Static (Finding the Team Average)
	Why is there so much static?
	Meet the static initializer
	Displaying the overall team average
	The static keyword is yesterday’s news
	Could cause static; handle with care

	Experiments with Variables
	Putting a variable in its place
	Telling a variable where to go

	Passing Parameters
	Pass by value
	Returning a result
	Pass by reference
	Returning an object from a method
	Epilogue

	Chapter 11 Using Arrays to Juggle Values
	Getting Your Ducks All in a Row
	Creating an array in two easy steps
	Storing values
	Tab stops and other special things
	Using an array initializer
	Stepping through an array with the enhanced for loop
	Searching
	Writing to a file
	When to close a file

	Arrays of Objects
	Using the Room class
	Yet another way to beautify your numbers
	The conditional operator

	Command Line Arguments
	Using command line arguments in a Java program
	Checking for the right number of command line arguments

	Chapter 12 Using Collections and Streams (When Arrays Aren’t Good Enough)
	Understanding the Limitations of Arrays
	Collection Classes to the Rescue
	Using an ArrayList
	Using generics
	Wrapper classes
	Testing for the presence of more data
	Using an iterator
	Java’s many collection classes

	Functional Programming
	Solving a problem the old-fashioned way
	Streams
	Lambda expressions
	A taxonomy of lambda expressions
	Using streams and lambda expressions
	Why bother?
	Method references

	Chapter 13 Looking Good When Things Take Unexpected Turns
	Handling Exceptions
	The parameter in a catch clause
	Exception types
	Who’s going to catch the exception?
	Catching two or more exceptions at a time
	Throwing caution to the wind
	Doing useful things
	Our friends, the good exceptions

	Handle an Exception or Pass the Buck
	Finishing the Job with a finally Clause
	A try Statement with Resources

	Chapter 14 Sharing Names among the Parts of a Java Program
	Access Modifiers
	Classes, Access, and Multipart Programs
	Members versus classes
	Access modifiers for members
	Putting a drawing on a frame
	Directory structure
	Making a frame

	Sneaking Away from the Original Code
	Default access
	Crawling back into the package

	Protected Access
	Subclasses that aren’t in the same package
	Classes that aren’t subclasses (but are in the same package)

	Access Modifiers for Java Classes
	Public classes
	Nonpublic classes

	Chapter 15 Fancy Reference Types
	Java’s Types
	The Java Interface
	Two interfaces
	Implementing interfaces
	Putting the pieces together

	Abstract Classes
	Caring for your pet
	Using all your classes

	Relax! You’re Not Seeing Double!

	Chapter 16 Responding to Keystrokes and Mouse Clicks
	Go On . . . Click That Button
	Events and event handling
	Threads of execution
	The keyword this
	Inside the actionPerformed method
	The serialVersionUID

	Responding to Things Other Than Button Clicks
	Creating Inner Classes

	Chapter 17 Using Java Database Connectivity
	Creating a Database and a Table
	What happens when you run the code
	Using SQL commands
	Connecting and disconnecting

	Putting Data in the Table
	Retrieving Data
	Destroying Data

	Part 5 The Part of Tens
	Chapter 18 Ten Ways to Avoid Mistakes
	Putting Capital Letters Where They Belong
	Breaking Out of a switch Statement
	Comparing Values with a Double Equal Sign
	Adding Components to a GUI
	Adding Listeners to Handle Events
	Defining the Required Constructors
	Fixing Non-Static References
	Staying within Bounds in an Array
	Anticipating Null Pointers
	Helping Java Find Its Files

	Chapter 19 Ten Websites for Java
	This Book’s Website
	The Horse’s Mouth
	Finding News, Reviews, and Sample Code
	Got a Technical Question?

	Index
	EULA

